Parallel bandreduction and tridiagonalization

作者: M. Marques , C. Bischof , X. Sun

DOI:

关键词:

摘要: This paper presents a parallel implementation of blocked band reduction algorithm for symmetric matrices suggested by Bischof and Sun. The to tridiagonal or block form is special case this algorithm. A double torus wrap mapping used as the underlying data distribution so-called WY representation employed represent orthogonal transformations. Preliminary performance results on Intel Delta indicate that well-suited MIMD computing environment use approach significantly improves performance.

参考文章(11)
Steven Huss-Lederman, Elaine M. Jacobson, Anna Tsao, Guodong Zhang, Matrix Multiplication on the Intel Touchstone Delta. PPSC. pp. 375- 382 ,(1993)
Anna Tsao, Guodong Zhang, Steven Huss-Lederman, A parallel implementation of the invariant subspace decomposition algorithm for dense symmetric matrices siam conference on parallel processing for scientific computing. pp. 367- 374 ,(1993)
Robert A. van de Geijn, David G. Payne, Michael Barnett, Richard J. Littlefield, Efficient Communication Primitives on Mesh Architectures with Hardware Routing. PPSC. pp. 943- 948 ,(1993)
R.A. Vandegeijn, On global combine operations Journal of Parallel and Distributed Computing. ,vol. 22, pp. 324- 328 ,(1994) , 10.1006/JPDC.1994.1091
Bruce A. Hendrickson, David E. Womble, The torus-wrap mapping for dense matrix calculations on massively parallel computers SIAM Journal on Scientific Computing. ,vol. 15, pp. 1201- 1226 ,(1994) , 10.1137/0915074
Linda Kaufman, Banded Eigenvalue Solvers on Vector Machines ACM Transactions on Mathematical Software. ,vol. 10, pp. 73- 85 ,(1984) , 10.1145/356068.356074
Jack J Dongarra, Robert A van de Geijn, Reduction to condensed form for the Eigenvalue problem on distributed memory architectures Parallel Computing. ,vol. 18, pp. 973- 982 ,(1992) , 10.1016/0167-8191(92)90011-U
Christian Bischof, Charles Van Loan, The WY Representation for Products of Householder Matrices SIAM Journal on Scientific and Statistical Computing. ,vol. 8, pp. s2- s13 ,(1987) , 10.1137/0908009
H. R. Schwarz, Tridiagonalization of a symetric band matrix Numerische Mathematik. ,vol. 12, pp. 231- 241 ,(1968) , 10.1007/BF02162505