Planar-CG Methods and Matrix Tridiagonalization in Large Scale Unconstrained Optimization

作者: Giovanni Fasano , None

DOI: 10.1007/978-1-4613-0241-4_11

关键词:

摘要: In this paper we aim at carrying out and describing some issues for real eigenvalue computation via iterative methods. More specifically work new techniques iteratively developing specific tridiagonalizations of a symmetric indefinite matrix A ∈ R n × , by means suitable Krylov subspace algorithms defined in [16], [26]. These schemes represent extensions the well known Conjugate Gradient (CG) method to case. We briefly recall these suggest comparison with [22], along discussion on practical application proposed results computation. Furthermore, focus motivating fruitful use ensuring convergence second order points, within an optimization framework.

参考文章(34)
Stefano Lucidi, Massimo Roma, Numerical Experiences with New Truncated Newton Methodsin Large Scale Unconstrained Optimization Computational Optimization and Applications. ,vol. 7, pp. 71- 87 ,(1997) , 10.1023/A:1008619812615
H. Bowdler, R. S. Martin, C. Reinsch, J. H. Wilkinson, The QR and QL Algorithms for Symmetric Matrices Numerische Mathematik. ,vol. 11, pp. 227- 240 ,(1971) , 10.1007/978-3-642-86940-2_14
Jorge J. Moré, Danny C. Sorensen, On the use of directions of negative curvature in a modified newton method Mathematical Programming. ,vol. 16, pp. 1- 20 ,(1979) , 10.1007/BF01582091
M. Marques, C. Bischof, X. Sun, Parallel bandreduction and tridiagonalization PPSC. pp. 383- 390 ,(1993)
James W. Demmel, Applied Numerical Linear Algebra ,(1997)
Stefano Lucidi, Francesco Rochetich, Massimo Roma, Curvilinear Stabilization Techniques for Truncated Newton Methods in Large Scale Unconstrained Optimization Siam Journal on Optimization. ,vol. 8, pp. 916- 939 ,(1998) , 10.1137/S1052623495295250
Ron S. Dembo, Trond Steihaug, Truncated-newtono algorithms for large-scale unconstrained optimization Mathematical Programming. ,vol. 26, pp. 190- 212 ,(1983) , 10.1007/BF02592055
Alan Edelman, Steven T. Smith, On conjugate gradient-like methods for eigen-like problems BIT Numerical Mathematics. ,vol. 36, pp. 494- 508 ,(1996) , 10.1007/BF01731929
W. W. Bradbury, R. Fletcher, New iterative methods for solution of the eigenproblem Numerische Mathematik. ,vol. 9, pp. 259- 267 ,(1966) , 10.1007/BF02162089