A convex, smooth and invertible contact model for trajectory optimization

作者: Emanuel Todorov

DOI: 10.1109/ICRA.2011.5979814

关键词:

摘要: Trajectory optimization is done most efficiently when an inverse dynamics model available. Here we develop the first of contact defined in both forward and directions. The impulse solution to a convex problem: minimize kinetic energy space subject non-penetration friction-cone constraints. We use custom interior-point method make problem unconstrained; this key defining consistent way. resulting has parameter which sets amount smoothing, facilitating continuation methods for optimization. implemented proposed solver our new physics engine (MuJoCo). A full Newton step trajectory 3D walking gait takes only 160 msec, on 12-core PC.

参考文章(15)
Imre Pólik, Tamás Terlaky, Interior Point Methods for Nonlinear Optimization Lecture Notes in Mathematics. pp. 215- 276 ,(2010) , 10.1007/978-3-642-11339-0_4
Jean Jacques Moreau, On Unilateral Constraints, Friction and Plasticity New Variational Techniques in Mathematical Physics. pp. 171- 322 ,(2011) , 10.1007/978-3-642-10960-7_7
Jack M. Wang, David J. Fleet, Aaron Hertzmann, Optimizing walking controllers for uncertain inputs and environments international conference on computer graphics and interactive techniques. ,vol. 29, pp. 73- ,(2010) , 10.1145/1778765.1778810
Danny M. Kaufman, Shinjiro Sueda, Doug L. James, Dinesh K. Pai, Staggered projections for frictional contact in multibody systems ACM Transactions on Graphics. ,vol. 27, pp. 1- 11 ,(2008) , 10.1145/1409060.1409117
Emanuel Todorov, Implicit nonlinear complementarity: A new approach to contact dynamics international conference on robotics and automation. pp. 2322- 2329 ,(2010) , 10.1109/ROBOT.2010.5509739
A New Perspective on Constrained Motion Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 439, pp. 407- 410 ,(1992) , 10.1098/RSPA.1992.0158
A. Chatterjee, A. Ruina, A New Algebraic Rigid-Body Collision Law Based on Impulse Space Considerations Journal of Applied Mechanics. ,vol. 65, pp. 939- 951 ,(1998) , 10.1115/1.2791938
Anders Forsgren, Philip E. Gill, Margaret H. Wright, Interior Methods for Nonlinear Optimization SIAM Review. ,vol. 44, pp. 525- 597 ,(2002) , 10.1137/S0036144502414942
Manoj Srinivasan, Andy Ruina, Computer optimization of a minimal biped model discovers walking and running. Nature. ,vol. 439, pp. 72- 75 ,(2006) , 10.1038/NATURE04113
Mihai Anitescu, Gary D. Hart, A fixed-point iteration approach for multibody dynamics with contact and small friction Mathematical Programming. ,vol. 101, pp. 3- 32 ,(2004) , 10.1007/S10107-004-0535-6