Ordinal pattern dependence between hydrological time series

作者: Svenja Fischer , Andreas Schumann , Alexander Schnurr

DOI: 10.1016/J.JHYDROL.2017.03.029

关键词:

摘要: Abstract Ordinal patterns provide a method to measure dependencies between time series. In contrast classical correlation measures like the Pearson coefficient they are able not only linear but also non-linear even in presence of non-stationarity. Hence, noteworthy alternative approaches when considering discharge Discharge series naturally show high variation as well single extraordinary extreme events and, caused by anthropogenic and climatic impacts, non-stationary behaviour. Here, ordinal is used compare pairwise derived from macro- mesoscale catchments Germany. Differences coincident groups were detected for winter summer annual maxima. Hydrological series, which mainly driven conditions (yearly discharges low water discharges) showed other some cases surprising interdependencies macroscale catchments. Anthropogenic impacts construction reservoir or different flood urbanization could be detected.

参考文章(20)
L. Mediero, T.R. Kjeldsen, N. Macdonald, S. Kohnova, B. Merz, S. Vorogushyn, D. Wilson, T. Alburquerque, G. Blöschl, E. Bogdanowicz, A. Castellarin, J. Hall, M. Kobold, J. Kriauciuniene, M. Lang, H. Madsen, G. Onuşluel Gül, R.A.P. Perdigão, L.A. Roald, J.L. Salinas, A.D. Toumazis, N. Veijalainen, Óðinn Þórarinsson, Identification of coherent flood regions across Europe by using the longest streamflow records Journal of Hydrology. ,vol. 528, pp. 341- 360 ,(2015) , 10.1016/J.JHYDROL.2015.06.016
Dedi Liu, Shenglian Guo, Yanqing Lian, Lihua Xiong, Xiaohong Chen, Climate‐informed low‐flow frequency analysis using nonstationary modelling Hydrological Processes. ,vol. 29, pp. 2112- 2124 ,(2015) , 10.1002/HYP.10360
R. T. Clarke, Hydrological prediction in a non-stationary world Hydrology and Earth System Sciences. ,vol. 11, pp. 408- 414 ,(2007) , 10.5194/HESS-11-408-2007
Francesco Serinaldi, Chris G. Kilsby, Stationarity is undead: Uncertainty dominates the distribution of extremes Advances in Water Resources. ,vol. 77, pp. 17- 36 ,(2015) , 10.1016/J.ADVWATRES.2014.12.013
Christoph Bandt, Bernd Pompe, Permutation entropy: a natural complexity measure for time series. Physical Review Letters. ,vol. 88, pp. 174102- ,(2002) , 10.1103/PHYSREVLETT.88.174102
Mathieu Sinn, Karsten Keller, Estimation of ordinal pattern probabilities in Gaussian processes with stationary increments Computational Statistics & Data Analysis. ,vol. 55, pp. 1781- 1790 ,(2011) , 10.1016/J.CSDA.2010.11.009
Chstoph Bandt, Faten Shiha, Order Patterns in Time Series Journal of Time Series Analysis. ,vol. 28, pp. 646- 665 ,(2007) , 10.1111/J.1467-9892.2007.00528.X
Jose D. Salas, Jayantha Obeysekera, Revisiting the Concepts of Return Period and Risk for Nonstationary Hydrologic Extreme Events Journal of Hydrologic Engineering. ,vol. 19, pp. 554- 568 ,(2014) , 10.1061/(ASCE)HE.1943-5584.0000820
Christoph Bandt, Ordinal time series analysis Ecological Modelling. ,vol. 182, pp. 229- 238 ,(2005) , 10.1016/J.ECOLMODEL.2004.04.003