A General-Model-Space Diagrammatic Perturbation Theory

作者: Gabriel Hose , Uzi Kaldor

DOI: 10.1088/0031-8949/21/3-4/019

关键词:

摘要: A diagrammatic many-body perturbation theory applicable to arbitrary model spaces is presented. The necessity of having a complete space (all possible occupancies the partially-filled shells) avoided. This requirement may be troublesome for systems with several well-spaced open shells, such as most atomic and molecular excited states, spans very broad energy range leaves out states within that range, leading poor or no convergence series. method presented here would particularly useful states. solution problem (He2 Σg+ states) demonstrated.

参考文章(44)
S.L. Guberman, W.A. Goddard, On the origin of energy barriers in the excited states of He2 Chemical Physics Letters. ,vol. 14, pp. 460- 465 ,(1972) , 10.1016/0009-2614(72)80240-9
G. Oberlechner, F. Owono-N’-Guema, J. Richert, Perturbation theory for the degenerate case in the many-body problem Il Nuovo Cimento B. ,vol. 68, pp. 23- 43 ,(1970) , 10.1007/BF02710356
Rodney J. Bartlett, David M. Silver, NUMERICAL INFINITE-ORDER PERTURBATION THEORY Springer, Boston, MA. pp. 393- 408 ,(1976) , 10.1007/978-1-4757-1659-7_26
B. H. Brandow, Perturbation theory of effective Hamiltonians Effective Interactions and Operators in Nuclei. ,vol. 40, pp. 1- 24 ,(1975) , 10.1007/3-540-07400-7_1
B.H. Brandow, Linked-Cluster Perturbation Theory for Closed- and Open-Shell Systems Advances in Quantum Chemistry. ,vol. 10, pp. 187- 249 ,(1977) , 10.1016/S0065-3276(08)60581-X
Uzi Kaldor, Many-Body Perturbation-Theory Calculations for Excited Molecular States Physical Review Letters. ,vol. 31, pp. 1338- 1340 ,(1973) , 10.1103/PHYSREVLETT.31.1338
T.T.S. Kuo, S.Y. Lee, K.F. Ratcliff, A folded-diagram expansion of the model-space effective hamiltonian Nuclear Physics A. ,vol. 176, pp. 65- 88 ,(1971) , 10.1016/0375-9474(71)90731-7
Peter S. Stern, Uzi Kaldor, Many‐body perturbation theory applied to eight states of BH Journal of Chemical Physics. ,vol. 64, pp. 2002- 2009 ,(1976) , 10.1063/1.432466