An algebraic method exactly solving two high-dimensional nonlinear evolution equations

作者: Hu Junqi

DOI: 10.1016/J.CHAOS.2004.02.044

关键词:

摘要: Abstract An algebraic method is applied to construct soliton solutions, doubly periodic solutions and a range of other physical interest for two high-dimensional nonlinear evolution equations. Among them, the Jacobi elliptic exactly degenerate at certain limit condition. Compared with most existing tanh methods, proposed gives new more general solutions. More importantly, provides guideline classify various types according some parameters.

参考文章(21)
VB Matveev, MA Salle, Darboux transformations and solitons ,(1992)
G Neugebauer, D Kramer, Einstein-Maxwell solitons Journal of Physics A. ,vol. 16, pp. 1927- 1936 ,(1983) , 10.1088/0305-4470/16/9/017
Hon-Wah Tam, Wen-Xiu Ma, Xing-Biao Hu, Dao-Liu Wang, The Hirota-Satsuma Coupled KdV Equation and a Coupled Ito System Revisited Journal of the Physical Society of Japan. ,vol. 69, pp. 45- 52 ,(2000) , 10.1143/JPSJ.69.45
S B Leble, N V Ustinov, Darboux transforms, deep reductions and solitons Journal of Physics A. ,vol. 26, pp. 5007- 5016 ,(1993) , 10.1088/0305-4470/26/19/029
R. Beals, R. R. Coifman, Scattering and inverse scattering for first order systems Communications on Pure and Applied Mathematics. ,vol. 37, pp. 39- 90 ,(1984) , 10.1002/CPA.3160370105
Sen-yue Lou, Dromion-like structures in a (3+1)-dimensional KdV-type equation Journal of Physics A: Mathematical and General. ,vol. 29, pp. 5989- 6001 ,(1996) , 10.1088/0305-4470/29/18/027
Ryogo Hirota, Junkichi Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation Physics Letters A. ,vol. 85, pp. 407- 408 ,(1981) , 10.1016/0375-9601(81)90423-0
Willy Hereman, Exact solitary wave solutions of coupled nonlinear evolution equations using MACSYMA Computer Physics Communications. ,vol. 65, pp. 143- 150 ,(1991) , 10.1016/0010-4655(91)90166-I