Transition-metal dopants in tetrahedrally bonded semiconductors

作者: Victoria Ramaker Kortan

DOI: 10.17077/ETD.F0X9PTKY

关键词:

摘要: It has become increasingly apparent that the future of electronic devices can and will rely on functionality provided by single or few dopant atoms. The most scalable physical system for quantum technologies, i.e. sensing, communication computation, are spins in crystal lattices. Diamond is an excellent host offering long room temperature spin coherence times there been exceptional experimental work done with nitrogen vacancy center diamond demonstrating many forms control. Transition metal dopants have additional advantages, large spin-orbit interaction internal core levels, not present center. This explores implications degrees freedom associated d levels using a tight-binding model Koster-Slater technique. split into two separate symmetry states tetrahedral bonding environments result different wavefunction spatial extents. For 4d semiconductors, e.g. GaAs, this reproduced adding set orbitals location transition impurity modifying hopping parameters from to its nearest neighbors. does case 3d diamond, where no reason drastically alter difference extent as pronounced. In iron gallium arsenide band gap responsible decrease tunneling current when measured scanning microscope due interference between elastic paths comparison measurements calculations provides information regarding material parameters. less distinction levels. When considering pairs important quantity

参考文章(162)
David D. Awschalom, Michael E. Flatté, Challenges for semiconductor spintronics Nature Physics. ,vol. 3, pp. 153- 159 ,(2007) , 10.1038/NPHYS551
F. Marczinowski, J. Wiebe, J.-M. Tang, M. E. Flatté, F. Meier, M. Morgenstern, R. Wiesendanger, Local electronic structure near Mn acceptors in InAs: surface-induced symmetry breaking and coupling to host states. Physical Review Letters. ,vol. 99, pp. 157202- ,(2007) , 10.1103/PHYSREVLETT.99.157202
J. M. Kikkawa, D. D. Awschalom, Resonant Spin Amplification in n-Type GaAs Physical Review Letters. ,vol. 80, pp. 4313- 4316 ,(1998) , 10.1103/PHYSREVLETT.80.4313
Behtash Behin-Aein, Deepanjan Datta, Sayeef Salahuddin, Supriyo Datta, Proposal for an all-spin logic device with built-in memory Nature Nanotechnology. ,vol. 5, pp. 266- 270 ,(2010) , 10.1038/NNANO.2010.31
C. Phatak, A. K. Petford-Long, O. Heinonen, Direct Observation of Unconventional Topological Spin Structure in Coupled Magnetic Discs Physical Review Letters. ,vol. 108, pp. 067205- ,(2012) , 10.1103/PHYSREVLETT.108.067205
Elliott W. Montroll, Renfrey B. Potts, Effect of Defects on Lattice Vibrations Physical Review. ,vol. 100, pp. 525- 543 ,(1955) , 10.1103/PHYSREV.100.525
A. Bayman, P. K. Hansma, W. C. Kaska, Shifts and dips in inelastic-electron-tunneling spectra due to the tunnel-junction environment Physical Review B. ,vol. 24, pp. 2449- 2455 ,(1981) , 10.1103/PHYSREVB.24.2449
J.I Martı́n, J Nogués, Kai Liu, J.L Vicent, Ivan K Schuller, Ordered magnetic nanostructures: fabrication and properties Journal of Magnetism and Magnetic Materials. ,vol. 256, pp. 449- 501 ,(2003) , 10.1016/S0304-8853(02)00898-3
R. Hanson, V. V. Dobrovitski, A. E. Feiguin, O. Gywat, D. D. Awschalom, Coherent Dynamics of a Single Spin Interacting with an Adjustable Spin Bath Science. ,vol. 320, pp. 352- 355 ,(2008) , 10.1126/SCIENCE.1155400
N. T. Son, P. Carlsson, J. ul Hassan, E. Janzén, T. Umeda, J. Isoya, A. Gali, M. Bockstedte, N. Morishita, T. Ohshima, H. Itoh, Divacancy in 4H-SiC. Physical Review Letters. ,vol. 96, pp. 055501- ,(2006) , 10.1103/PHYSREVLETT.96.055501