Glioblastoma ablates pericytes antitumor immune function through aberrant up-regulation of chaperone-mediated autophagy

作者: Rut Valdor , David García-Bernal , Dolores Riquelme , Carlos M. Martinez , Jose M. Moraleda

DOI: 10.1073/PNAS.1903542116

关键词:

摘要: The contractile perivascular cells, pericytes (PC), are hijacked by glioblastoma (GB) to facilitate tumor progression. PC's protumorigenic function requires direct interaction with cells and contributes the establishment of immunotolerance growth. Cancer up-regulate their own chaperone-mediated autophagy (CMA), a process that delivers selective cytosolic proteins lysosomes for degradation, pro-oncogenic effects. However, possible impact cancer may have on CMA surrounding host has not been explored. We analyzed contribution GB-induced changes in PC biology. found is markedly up-regulated response oxidative burst follows PC-GB cell interaction. Genetic manipulations block up-regulation allows them maintain proinflammatory support induction effective antitumor T responses required GB clearance. activity essential help show inhibition promotes death release high immunogenic levels granulocyte-macrophage colony stimulating factor (GM-CSF), through deregulation expression cell-to-cell protein secretion. A mouse model grafted vivo CMA-defective shows reduced proliferation immune compared mice control PC. Our findings identify abnormal as mechanism which elicit immunosuppressive stabilize GB-PC interactions necessary survival.

参考文章(47)
Matthias Preusser, Michael Lim, David A. Hafler, David A. Reardon, John H. Sampson, Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nature Reviews Neurology. ,vol. 11, pp. 504- 514 ,(2015) , 10.1038/NRNEUROL.2015.139
Jaime L. Schneider, Joan Villarroya, Antonio Diaz‐Carretero, Bindi Patel, Aleksandra M. Urbanska, Mia M. Thi, Francesc Villarroya, Laura Santambrogio, Ana Maria Cuervo, Loss of hepatic chaperone‐mediated autophagy accelerates proteostasis failure in aging Aging Cell. ,vol. 14, pp. 249- 264 ,(2015) , 10.1111/ACEL.12310
H Haegel, C Tölg, M Hofmann, R Ceredig, Activated mouse astrocytes and T cells express similar CD44 variants. Role of CD44 in astrocyte/T cell binding. Journal of Cell Biology. ,vol. 122, pp. 1067- 1077 ,(1993) , 10.1083/JCB.122.5.1067
Toshihiko Isaka, Toshiki Yoshimine, Motohiko Maruno, Ryotaro Kuroda, Hidemi Ishii, Toru Hayakawa, Altered expression of antithrombotic molecules in human glioma vessels. Acta Neuropathologica. ,vol. 87, pp. 81- 85 ,(1994) , 10.1007/BF00386257
Peter Carmeliet, Rakesh K. Jain, Molecular mechanisms and clinical applications of angiogenesis Nature. ,vol. 473, pp. 298- 307 ,(2011) , 10.1038/NATURE10144
Anita B Hjelmeland, Justin D Lathia, Sith Sathornsumetee, Jeremy N Rich, Twisted tango: brain tumor neurovascular interactions Nature Neuroscience. ,vol. 14, pp. 1375- 1381 ,(2011) , 10.1038/NN.2955
Hiroshi Koga, Marta Martinez-Vicente, Fernando Macian, Vladislav V. Verkhusha, Ana Maria Cuervo, A photoconvertible fluorescent reporter to track chaperone-mediated autophagy Nature Communications. ,vol. 2, pp. 386- 386 ,(2011) , 10.1038/NCOMMS1393
Alexandre Chlenski, Shuqing Liu, Lisa J. Guerrero, Qiwei Yang, Yufeng Tian, Helen R. Salwen, Peter Zage, Susan L. Cohn, SPARC expression is associated with impaired tumor growth, inhibited angiogenesis and changes in the extracellular matrix. International Journal of Cancer. ,vol. 118, pp. 310- 316 ,(2006) , 10.1002/IJC.21357
H. Chiang, Terlecky, C. Plant, J. Dice, A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins Science. ,vol. 246, pp. 382- 385 ,(1989) , 10.1126/SCIENCE.2799391