Classical Quantization of a Hamiltonian with Ergodic Behavior

作者: M. C. Gutzwiller

DOI: 10.1103/PHYSREVLETT.45.150

关键词:

摘要: Conservative Hamiltonian systems with two degrees of freedom are discussed where a typical trajectory fills the whole surface constant energy. The trace quantum mechanical Green's function is approximated by sum over classical periodic orbits. This leads directly to Selberg's formula for motion particle on negative curvature, and, when applied anisotropic Kepler problem, yields excellent results all energy levels.

参考文章(12)
Martin C. Gutzwiller, Periodic Orbits and Classical Quantization Conditions Journal of Mathematical Physics. ,vol. 12, pp. 343- 358 ,(1971) , 10.1063/1.1665596
Martin C. Gutzwiller, Phase-Integral Approximation in Momentum Space and the Bound States of an Atom Journal of Mathematical Physics. ,vol. 8, pp. 1979- 2000 ,(1967) , 10.1063/1.1705112
Martin C. Gutzwiller, Energy Spectrum According to Classical Mechanics Journal of Mathematical Physics. ,vol. 11, pp. 1791- 1806 ,(1970) , 10.1063/1.1665328
H. P. McKean, Selberg's trace formula as applied to a compact riemann surface Communications on Pure and Applied Mathematics. ,vol. 25, pp. 225- 246 ,(1972) , 10.1002/CPA.3160250302
Martin C. Gutzwiller, The anisotropic Kepler problem in two dimensions Journal of Mathematical Physics. ,vol. 14, pp. 139- 152 ,(1973) , 10.1063/1.1666164
Martin C. Gutzwiller, Bernoulli sequences and trajectories in the anisotropic Kepler problem Journal of Mathematical Physics. ,vol. 18, pp. 806- 823 ,(1977) , 10.1063/1.523310
Robert L Devaney, Nonregularizability of the anisotropic Kepler problem Journal of Differential Equations. ,vol. 29, pp. 253- 268 ,(1978) , 10.1016/0022-0396(78)90124-9
Robert L. Devaney, Collision Orbits in the Anisotropic Kepler Problem Inventiones Mathematicae. ,vol. 45, pp. 221- 251 ,(1978) , 10.1007/BF01403170
William H. Miller, Semiclassical limit of quantum mechanical transition state theory for nonseparable systems The Journal of Chemical Physics. ,vol. 62, pp. 1899- 1906 ,(1975) , 10.1063/1.430676
William H. Miller, Semiclassical quantization of nonseparable systems: A new look at periodic orbit theory Journal of Chemical Physics. ,vol. 63, pp. 996- 999 ,(1975) , 10.1063/1.431410