Dynamics of Wolbachia pipientis Gene Expression Across the Drosophila melanogaster Life Cycle

作者: Irene L G Newton , Danny W Rice , Casey M Bergman , Danny E Miller , Danny E Miller

DOI: 10.1534/G3.115.021931

关键词:

摘要: Symbiotic interactions between microbes and their multicellular hosts have manifold biological consequences. To better understand how bacteria maintain symbiotic associations with animal hosts, we analyzed genome-wide gene expression for the endosymbiotic α-proteobacteria Wolbachia pipientis across entire life cycle of Drosophila melanogaster. We found that majority genes are expressed stably D. melanogaster cycle, but 7.8% exhibit robust stage- or sex-specific differences when studied in whole-organism context. Differentially-expressed typically up-regulated after embryogenesis include many bacterial membrane, secretion system, ankyrin repeat-containing proteins. Sex-biased often organized as small operons uncharacterized mainly adult males an age-dependent manner. also systematically investigated levels previously-reported candidate thought to be involved host-microbe interaction, including those WO-A WO-B prophages Octomom region, which has been implicated regulating titer pathogenicity. Our work provides comprehensive insight into developmental dynamics a widespread endosymbiont its natural host context, shows public data harbor rich resources probe functional basis Wolbachia-Drosophila symbiosis annotate transcriptional outputs genome.

参考文章(95)
Michael O. Duff, Sara Olson, Xintao Wei, Sandra C. Garrett, Ahmad Osman, Mohan Bolisetty, Alex Plocik, Susan E. Celniker, Brenton R. Graveley, Genome-wide identification of zero nucleotide recursive splicing in Drosophila Nature. ,vol. 521, pp. 376- 379 ,(2015) , 10.1038/NATURE14475
J A Kennison, B J Brizuela, L Elfring, J W Tamkun, J Ballard, Genetic analysis of the brahma gene of Drosophila melanogaster and polytene chromosome subdivisions 72AB. Genetics. ,vol. 137, pp. 803- 813 ,(1994) , 10.1093/GENETICS/137.3.803
Jennifer L. Wilcox, Helen E. Dunbar, Russell D. Wolfinger, Nancy A. Moran, Consequences of reductive evolution for gene expression in an obligate endosymbiont Molecular Microbiology. ,vol. 48, pp. 1491- 1500 ,(2003) , 10.1046/J.1365-2958.2003.03522.X
Miriam Hercus, Ary A. Hoffmann, Hayat Dagher, Population Dynamics of the Wolbachia Infection Causing Cytoplasmic Incompatibility in Drosophila melanogaster Genetics. ,vol. 148, pp. 221- 231 ,(1998) , 10.1093/GENETICS/148.1.221
N. A. Moran, Accelerated evolution and Muller's rachet in endosymbiotic bacteria. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 93, pp. 2873- 2878 ,(1996) , 10.1073/PNAS.93.7.2873
Timothy T. Perkins, Robert A. Kingsley, Maria C. Fookes, Paul P. Gardner, Keith D. James, Lu Yu, Samuel A. Assefa, Miao He, Nicholas J. Croucher, Derek J. Pickard, Duncan J. Maskell, Julian Parkhill, Jyoti Choudhary, Nicholas R. Thomson, Gordon Dougan, A Strand-Specific RNA–Seq Analysis of the Transcriptome of the Typhoid Bacillus Salmonella Typhi PLoS Genetics. ,vol. 5, pp. e1000569- 13 ,(2009) , 10.1371/JOURNAL.PGEN.1000569
Steven P Sinkins, Thomas Walker, Amy R Lynd, Andrew R Steven, Ben L Makepeace, H Charles J. Godfray, Julian Parkhill, None, Wolbachia variability and host effects on crossing type in Culex mosquitoes Nature. ,vol. 436, pp. 257- 260 ,(2005) , 10.1038/NATURE03629
Bethany N. Kent, Seth R. Bordenstein, Phage WO of Wolbachia: lambda of the endosymbiont world Trends in Microbiology. ,vol. 18, pp. 173- 181 ,(2010) , 10.1016/J.TIM.2009.12.011
Yukiko Fujii, Takeo Kubo, Hajime Ishikawa, Tetsuhiko Sasaki, Isolation and characterization of the bacteriophage WO from Wolbachia, an arthropod endosymbiont Biochemical and Biophysical Research Communications. ,vol. 317, pp. 1183- 1188 ,(2004) , 10.1016/J.BBRC.2004.03.164