Covalent intermediate in the catalytic mechanism of the radical S-adenosyl-L-methionine methyl synthase RlmN trapped by mutagenesis.

作者: Kevin P. McCusker , Katalin F. Medzihradszky , Anthony L. Shiver , Robert J. Nichols , Feng Yan

DOI: 10.1021/JA307855D

关键词:

摘要: The posttranscriptional modification of ribosomal RNA (rRNA) modulates function and confers resistance to antibiotics targeted the ribosome. radical S-adenosyl-L-methionine (SAM) methyl synthases, RlmN Cfr, both methylate A2503 within peptidyl transferase center prokaryotic ribosomes, yielding 2-methyl- 8-methyl-adenosine, respectively. C2 C8 positions adenosine are unusual methylation substrates due their electrophilicity. To accomplish this reaction, Cfr use a shared radical-mediated mechanism. In addition SAM CX(3)CX(2)C motif, contain two conserved cysteine residues required for in vivo function, putatively form (cysteine 355 RlmN) resolve 118 covalent intermediate needed achieve challenging transformation. Currently, there is no direct evidence proposed intermediate. We have further investigated roles these cysteines mechanism RlmN. Cysteine mutants unable intermediate, either or vitro, enabling us isolate characterize Additionally, tandem mass spectrometric analyses mutant reveal methylene-linked at 355. Employing deuterium-labeled vitro has allowed clarify formation Together, experiments provide compelling species between its rRNA substrate well as catalysis.

参考文章(63)
M Moss, P A Frey, The role of S-adenosylmethionine in the lysine 2,3-aminomutase reaction. Journal of Biological Chemistry. ,vol. 262, pp. 14859- 14862 ,(1987) , 10.1016/S0021-9258(18)48103-3
J Baraniak, M L Moss, P A Frey, Lysine 2,3-aminomutase. Support for a mechanism of hydrogen transfer involving S-adenosylmethionine. Journal of Biological Chemistry. ,vol. 264, pp. 1357- 1360 ,(1989) , 10.1016/S0021-9258(18)94194-3
Abu Nasar Siddique, Renata Z. Jurkowska, Tomasz P. Jurkowski, Albert Jeltsch, Auto-methylation of the mouse DNA-(cytosine C5)-methyltransferase Dnmt3a at its active site cysteine residue. FEBS Journal. ,vol. 278, pp. 2055- 2063 ,(2011) , 10.1111/J.1742-4658.2011.08121.X
V Bianchi, P Reichard, R Eliasson, E Pontis, M Krook, H Jörnvall, E Haggård-Ljungquist, Escherichia coli ferredoxin NADP+ reductase: activation of E. coli anaerobic ribonucleotide reduction, cloning of the gene (fpr), and overexpression of the protein. Journal of Bacteriology. ,vol. 175, pp. 1590- 1595 ,(1993) , 10.1128/JB.175.6.1590-1595.1993
C Osborne, L M Chen, R G Matthews, Isolation, cloning, mapping, and nucleotide sequencing of the gene encoding flavodoxin in Escherichia coli. Journal of Bacteriology. ,vol. 173, pp. 1729- 1737 ,(1991) , 10.1128/JB.173.5.1729-1737.1991
D.S. King, P. Reichard, Mass spectrometric determination of the radical scission site in the anaerobic ribonucleotide reductase of Escherichia coli. Biochemical and Biophysical Research Communications. ,vol. 206, pp. 731- 735 ,(1995) , 10.1006/BBRC.1995.1103
Gunhild Layer, Eric Kervio, Gaby Morlock, Dirk W. Heinz, Dieter Jahn, Janos Retey, Wolf-Dieter Schubert, Structural and functional comparison of HemN to other radical SAM enzymes. Biological Chemistry. ,vol. 386, pp. 971- 980 ,(2005) , 10.1515/BC.2005.113
Tanel Tenson, Alexander Mankin, Antibiotics and the ribosome Molecular Microbiology. ,vol. 59, pp. 1664- 1677 ,(2006) , 10.1111/J.1365-2958.2006.05063.X
Irwin A. Rose, Mechanism of the action of glyoxalase I. Biochimica et Biophysica Acta. ,vol. 25, pp. 214- 215 ,(1957) , 10.1016/0006-3002(57)90453-5