On the continuous extension of Adams-Bashforth methods and the event location in discontinuous ODEs

作者: Marco Berardi , Luciano Lopez

DOI: 10.1016/J.AML.2011.11.014

关键词:

摘要: Abstract The interpolation polynomial in the k -step Adams–Bashforth method may be used to compute numerical solution at off grid points. We show that such a is equivalent one obtained by Nordsieck technique for changing step size. also provide an application of this event location discontinuous differential systems.

参考文章(10)
M. Zennaro, Natural continuous extensions of Runge-Kutta formulas Mathematics of Computation. ,vol. 46, pp. 119- 133 ,(1986) , 10.2307/2008218
Arnold Nordsieck, On numerical integration of ordinary differential equations Mathematics of Computation. ,vol. 16, pp. 22- 49 ,(1962) , 10.1090/S0025-5718-1962-0136519-5
M. Zennaro, Natural continuous extensions of Runge-Kutta methods Mathematics of Computation. ,vol. 46, pp. 119- 133 ,(1986) , 10.1090/S0025-5718-1986-0815835-1
Robert D. Skeel, Equivalent Forms of Multistep Formulas Mathematics of Computation. ,vol. 33, pp. 1229- 1250 ,(1979) , 10.1090/S0025-5718-1979-0537967-4
L.F. Shampine, S. Thompson, Event location for ordinary differential equations Computers & Mathematics With Applications. ,vol. 39, pp. 43- 54 ,(2000) , 10.1016/S0898-1221(00)00045-6
M. R. Osborne, On Nordsieck's method for the numerical solution of ordinary differential equations Bit Numerical Mathematics. ,vol. 6, pp. 51- 57 ,(1966) , 10.1007/BF01939549
Syvert Paul Norsett, Ernst Hairer, Gerhard Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems ,(1987)