Efficient reduction of the number of associations rules using fuzzy clustering on the data

作者: Amel Grissa Touzi , Aicha Thabet , Minyar Sassi

DOI: 10.1007/978-3-642-21524-7_23

关键词:

摘要: In this paper, we are interested in the knowledge discovery methods. The major inconveniences of these methods are: i) generation a big number association rules that not easily assimilated by human brain ii) space memory and time execution necessary for management their data structures. To cure problem, propose to build (meta-rules) between groups (or clusters) resulting from preliminary fuzzy clustering on data. We prove can deduce about initial set if want more details. This solution reduced considerably generated rules, offered better interpretation optimized both time. approach is extensible; user able choose or extraction algorithm according domain his needs.

参考文章(18)
Nicolas Pasquier, Data mining : algorithmes d'extraction et de reduction des regles d'association dans les bases de donnees Université Blaise Pascal - Clermont-Ferrand II. ,(2000)
Ramakrishnan Srikant, Rakesh Agrawal, Fast Algorithms for Mining Association Rules in Large Databases very large data bases. pp. 487- 499 ,(1994)
Yves Bastide, Lotfi Lakhal, Gerd Stumme, Nicolas Pasquier, Rafik Taouil, Fast computation of concept lattices using data mining techniques 7th International Workshop on Knowledge Representation meets Databases - KRDB'2000. pp. 129- 139 ,(2000)
Mohammed Javeed Zaki, Ching-Jiu Hsiao, CHARM : An Efficient Algorithm for Closed Itemset Mining siam international conference on data mining. pp. 457- 473 ,(2002)
Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier, Lotfi Lakhal, Intelligent Structuring and Reducing of Association Rules with Formal Concept Analysis Lecture Notes in Computer Science. pp. 335- 350 ,(2001) , 10.1007/3-540-45422-5_24
Michael Goebel, Le Gruenwald, A survey of data mining and knowledge discovery software tools ACM SIGKDD Explorations Newsletter. ,vol. 1, pp. 20- 33 ,(1999) , 10.1145/846170.846172
Mohammed J. Zaki, Mining Non-Redundant Association Rules Data Mining and Knowledge Discovery. ,vol. 9, pp. 223- 248 ,(2004) , 10.1023/B:DAMI.0000040429.96086.C7
Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier, Lotfi Lakhal, Computing iceberg concept lattices with TITANIC data and knowledge engineering. ,vol. 42, pp. 189- 222 ,(2002) , 10.1016/S0169-023X(02)00057-5
Nicolas Pasquier, Yves Bastide, Rafik Taouil, Lotfi Lakhal, Efficient mining of association rules using closed itemset lattices Information Systems. ,vol. 24, pp. 25- 46 ,(1999) , 10.1016/S0306-4379(99)00003-4