Differential–algebraic equations in multibody system modeling

作者: D. Pogorelov

DOI: 10.1023/A:1019131212618

关键词:

摘要: … of both stiff and nonstiff equations of motion of multibody systems having the form of differential–algebraic equations (DAE) … The Park method is proposed for integration of stiff …

参考文章(17)
D. Yu. Pogorelov, Numerical modelling of the motion of systems of solids Computational Mathematics and Mathematical Physics. ,vol. 35, pp. 501- 506 ,(1995)
Thomas Andrzejewski, Hans Georg Bock, Edda Eich, Reinhold von Schwerin, Recent Advances in the Numerical Integration of Multibody Systems Springer Netherlands. pp. 127- 151 ,(1993) , 10.1007/978-94-017-0625-4_7
Lawrence F Shampine, Marilyn K Gordon, Computer solution of ordinary differential equations : the initial value problem W. H. Freeman. ,(1975)
Ernst Hairer, Gerhard Wanner, Solving Ordinary Differential Equations II ,(2010)
Douglas N. Arnold, L. F. Shampine, M. K. Gordon, Computer Solution of Ordinary Differential Equations. Mathematics of Computation. ,vol. 37, pp. 237- ,(1981) , 10.2307/2007518
C. F�hrer, B. J. Leimkuhler, Numerical solution of differential-algebraic equations for constrained mechanical motion Numerische Mathematik. ,vol. 59, pp. 55- 69 ,(1991) , 10.1007/BF01385770
M. Quack, J. Wittenburg:Dynamics of Systems of Rigid Bodies. Teubner Verlag. Stuttgart 1977. 224 Seiten, Preis: DM 74,- Berichte der Bunsengesellschaft für physikalische Chemie. ,vol. 82, pp. 551- 552 ,(1978) , 10.1002/BBPC.197800106