Semisupervised Image Classification With Laplacian Support Vector Machines

作者: L. Gomez-Chova , G. Camps-Valls , J. Munoz-Mari , J. Calpe

DOI: 10.1109/LGRS.2008.916070

关键词:

摘要: This letter presents a semisupervised method based on kernel machines and graph theory for remote sensing image classification. The support vector machine (SVM) is regularized …

参考文章(21)
Semi-Supervised Learning Advanced Methods in Sequence Analysis Lectures. pp. 221- 232 ,(2010) , 10.7551/MITPRESS/9780262033589.001.0001
Nello Cristianini, John Shawe-Taylor, Kernel Methods for Pattern Analysis ,(2004)
Bernhard Schölkopf, Alexander J. Smola, Learning with Kernels The MIT Press. pp. 626- ,(2018) , 10.7551/MITPRESS/4175.001.0001
A N Tikhonov, REGULARIZATION OF INCORRECTLY POSED PROBLEMS SOVIET MATHEMATICS DOKLADY. ,vol. 4, pp. 1624- 1627 ,(1963)
Fan R K Chung, Spectral Graph Theory ,(1996)
P. Castracane, F. Iavarone, S. Mica, E. Sottile, C. Vignola, O. Arino, M. Catakdi, D. Fernandez-Prieto, G. Guidotti, A. Masullo, I. Pratesi, Monitoring urban sprawl and its trends with EO data. UrbEx, a prototype national service from a WWF-ESA joint effort 2003 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas. pp. 245- 248 ,(2003) , 10.1109/DFUA.2003.1219997
Mikhail Belkin, Partha Niyogi, Semi-Supervised Learning on Riemannian Manifolds Machine Learning. ,vol. 56, pp. 209- 239 ,(2004) , 10.1023/B:MACH.0000033120.25363.1E
Luis Gomez-Chova, Diego Fernández-Prieto, Javier Calpe, Emilio Soria, Joan Vila, Gustavo Camps-Valls, Urban monitoring using multi-temporal SAR and multi-spectral data Pattern Recognition Letters. ,vol. 27, pp. 234- 243 ,(2006) , 10.1016/J.PATREC.2005.08.004
B.M. Shahshahani, D.A. Landgrebe, The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon international geoscience and remote sensing symposium. ,vol. 32, pp. 1087- 1095 ,(1994) , 10.1109/36.312897