Robust simplifications of multiscale biochemical networks

作者: Ovidiu Radulescu , Alexander N Gorban , Andrei Zinovyev , Alain Lilienbaum

DOI: 10.1186/1752-0509-2-86

关键词:

摘要: Background Cellular processes such as metabolism, decision making in development and differentiation, signalling, etc., can be modeled large networks of biochemical reactions. In order to understand the functioning these systems, there is a strong need for general model reduction techniques allowing simplify models without loosing their main properties. systems biology we also compare or couple them parts larger models. situations common level complexity needed.

参考文章(80)
P. Auger, R. Bravo de la Parra, J. -C. Poggiale, E. Sánchez, T. Nguyen-Huu, Aggregation of Variables and Applications to Population Dynamics Springer, Berlin, Heidelberg. pp. 209- 263 ,(2008) , 10.1007/978-3-540-78273-5_5
Aleksandr Dmitrievich Bri︠u︡no, Power Geometry in Algebraic and Differential Equations ,(2013)
Yu. A. Mitropolskii, N. N. Bogolyubov, Asymptotic Methods in the Theory of Nonlinear Oscillations ,(1961)
Ravindra Bapat, Stephane Gaubert, Marianne Akian, Min-plus methods in eigenvalue perturbation theory and generalised Lidskii-Vishik-Ljusternik theorem arXiv: Spectral Theory. ,(2004)
M. I. Freidlin, A. D. Wentzell, Gaussian Perturbations of Dynamical Systems. Neighborhood of an Equilibrium Point Grundlehren der mathematischen Wissenschaften. pp. 103- 135 ,(1998) , 10.1007/978-1-4612-0611-8_5
Eliodoro Chiavazzo, Karlin I.V, Gorban A.N, Comparison of invariant manifolds for model reduction in chemical kinetics Communications in Computational Physics. ,vol. 2, pp. 964- 992 ,(2007)
Iliya V. Karlin, Alexander N. Gorban, Invariant Manifolds for Physical and Chemical Kinetics ,(2005)