Quantum orbifold Hirzebruch-Riemann-Roch theorem in genus zero

作者: Hsian-Hua Tseng , Valentin Tonita

DOI:

关键词:

摘要: We introduce K-theoretic Gromov-Witten invariants of algebraic orbifold target spaces. Using the methods developed by Givental-Tonita we characterize Giventals Lagrangian cone quantum K theory orbifolds in terms cohomological cone.

参考文章(15)
Tetsuro Kawasaki, The Riemann-Roch theorem for complex V -manifolds Osaka Journal of Mathematics. ,vol. 16, pp. 151- 159 ,(1979) , 10.18910/8716
Alexander Givental, Valentin Tonita, The Hirzebruch--Riemann--Roch theorem in true genus-0 quantum K-theory arXiv: Algebraic Geometry. ,(2011)
Valentin Tonita, A virtual Kawasaki formula arXiv: Algebraic Geometry. ,(2011) , 10.2140/PJM.2014.268.249
Angelo Vistoli, Dan Abramovich, Tom Graber, Algebraic orbifold quantum products arXiv: Algebraic Geometry. ,(2001)
Dan Abramovich, Angelo Vistoli, Compactifying the space of stable maps Journal of the American Mathematical Society. ,vol. 15, pp. 27- 76 ,(2001) , 10.1090/S0894-0347-01-00380-0
Valentin Tonita, Twisted orbifold Gromov–Witten invariants Nagoya Mathematical Journal. ,vol. 213, pp. 141- 187 ,(2014) , 10.1215/00277630-2393950
Dan Abramovich, Tom Graber, Angelo Vistoli, Gromov-Witten theory of Deligne-Mumford stacks American Journal of Mathematics. ,vol. 130, pp. 1337- 1398 ,(2008) , 10.1353/AJM.0.0017
Michael Finkelberg, Alexander Braverman, Semi-infinite Schubert varieties and quantum K-theory of flag manifolds arXiv: Algebraic Geometry. ,(2011)
Tom Coates, Alessio Corti, Yuan-Pin Lee, Hsian-Hua Tseng, The quantum orbifold cohomology of weighted projective spaces Acta Mathematica. ,vol. 202, pp. 139- 193 ,(2009) , 10.1007/S11511-009-0035-X
Dan Abramovich, Alessio Corti, Angelo Vistoli, Twisted Bundles and Admissible Covers Communications in Algebra. ,vol. 31, pp. 3547- 3618 ,(2003) , 10.1081/AGB-120022434