General aspects of heterotic string compactifications on stacks and gerbes

作者: Lara B. Anderson , Bei Jia , Ryan Manion , Burt Ovrut , Eric Sharpe

DOI: 10.4310/ATMP.2015.V19.N3.A2

关键词:

摘要: In this paper we work out some basic results concerning heterotic string compactifications on stacks and, in particular, gerbes. A compactification a gerbe can be understood as, simultaneously, both space with restriction nonperturbative sectors, and also, gauge theory which subgroup of the group acts trivially massless matter. Gerbes admit more bundles than corresponding spaces, suggests they are potentially rich playground for compactifications. After give general characterization strings stacks, specialize to gerbes, consider three different classes ‘building blocks’ We argue that one class is equivalent same disjoint union another dual other third not perturbatively consistent, so do fact recover broad array new compactifications, just combinations existing ones. appendices explain how compute spectra derive necessary conditions stack or orbifold well-defined, also review properties

参考文章(107)
Hsian-Hua Tseng, Valentin Tonita, Quantum orbifold Hirzebruch-Riemann-Roch theorem in genus zero arXiv: Algebraic Geometry. ,(2013)
Ron Donagi, Burt A. Ovrut, Tony Pantev, Daniel Waldram, Spectral involutions on rational elliptic surfaces Advances in Theoretical and Mathematical Physics. ,vol. 5, pp. 499- 561 ,(2001) , 10.4310/ATMP.2001.V5.N3.A4
Anton Kapustin, Holomorphic reduction of N = 2 gauge theories, Wilson-'t Hooft operators, and S-duality arXiv: High Energy Physics - Theory. ,(2006)
Dan Edidin, Riemann-Roch for Deligne-Mumford stacks arXiv: Algebraic Geometry. ,(2012)
J. Frank Adams, Zafer Mahmud, 護 三村, Lectures on Exceptional Lie Groups ,(1996)
Paul Baum, Alain Connes, CHERN CHARACTER FOR DISCRETE GROUPS A Fête of Topology#R##N#Papers Dedicated to Itiro Tamura. pp. 163- 232 ,(1988) , 10.1016/B978-0-12-480440-1.50015-0
Nigel Hitchin, Lectures on Special Lagrangian Submanifolds arXiv: Differential Geometry. ,(1999)
Jochen Heinloth, Twisted Chern classes and Gm-gerbes Comptes Rendus Mathematique. ,vol. 341, pp. 623- 626 ,(2005) , 10.1016/J.CRMA.2005.09.041
J. Distler, Notes on N=2 $\sigma$-models$ arXiv: High Energy Physics - Theory. ,(1992)
Yunfeng Jiang, Hsian-Hua Tseng, Elena Andreini, On Gromov-Witten theory of root gerbes arXiv: Algebraic Geometry. ,(2008)