Graphical studies of three-body wave functions obtained with the correlation-function hyperspherical-harmonic method.

作者: M. I. Haftel , V. B. Mandelzweig

DOI: 10.1103/PHYSREVA.46.142

关键词:

摘要: Graphical representations of three-particle wave functions obtained by direct solution the Schr\"odinger equation with correlation-function hyperspherical-harmonic (CFHH) method are and analyzed for ground excited states helium atom state \ensuremath{\mu}dd mesomolecular ion. The inclusion adequate singular cluster-correlation behavior is shown to be crucial importance a proper description function. In CFHH function product correlation smooth factor expanded into (HH) functions. While HH expansion itself not able reproduce correct form function, correlations results in its even low values maximal global momenta ${\mathit{K}}_{\mathit{m}}$.

参考文章(19)
Victor B. Mandelzweig, Hyperspherical approach to few body problems: A summary and new developments Nuclear Physics A. ,vol. 508, pp. 63- 72 ,(1990) , 10.1016/0375-9474(90)90463-V
M.I. Haftel, V.B. Mandelzweig, A fast convergent hyperspherical expansion for the helium ground state Physics Letters A. ,vol. 120, pp. 232- 236 ,(1987) , 10.1016/0375-9601(87)90215-5
M. I. Haftel, V. B. Mandelzweig, Precise nonvariational calculations on the helium atom Physical Review A. ,vol. 38, pp. 5995- 5999 ,(1988) , 10.1103/PHYSREVA.38.5995
M. I. Haftel, V. B. Mandelzweig, Precise nonvariational calculation of the positronium negative ion. Physical Review A. ,vol. 39, pp. 2813- 2816 ,(1989) , 10.1103/PHYSREVA.39.2813
M.I Haftel, V.B Mandelzweig, Fast convergent hyperspherical harmonic expansion for three-body systems Annals of Physics. ,vol. 189, pp. 29- 52 ,(1989) , 10.1016/0003-4916(89)90076-6
M. I. Haftel, V. B. Mandelzweig, Correlation-function hyperspherical harmonic calculations of the ppμ , ddμ , and ttμ molecular ions Physical Review A. ,vol. 41, pp. 2339- 2343 ,(1990) , 10.1103/PHYSREVA.41.2339
J. H. Bartlett, J. J. Gibbons, C. G. Dunn, The Normal Helium Atom Physical Review. ,vol. 47, pp. 679- 680 ,(1935) , 10.1103/PHYSREV.47.679
C. D. Lin, Radial and angular correlations of doubly excited electrons Physical Review A. ,vol. 25, pp. 76- 87 ,(1982) , 10.1103/PHYSREVA.25.76