A mathematical criterion based on phase response curves for stability in a ring of coupled oscillators

作者: R. O. Dror , C. C. Canavier , R. J. Butera , J. W. Clark , J. H. Byrne

DOI: 10.1007/S004220050501

关键词:

摘要: Canavier et al. (1997) used phase response curves (PRCs) of individual oscillators to characterize the possible modes phase-locked entrainment an N-oscillator ring network. We extend this work by developing a mathematical criterion determine local stability such mode based on PRCs. Our method does not assume symmetry; neither nor their connections need be identical. To use these techniques for predicting and determining stability, one only PRC each oscillator in either experimentally or from computational model. show that network cannot determined simply testing ability entrain next. Stability depends number neurons ring, type mode, slope at point respective neuron. also describe simple criteria which are necessary sufficient examine implications results.

参考文章(25)
Benjamin C. Kuo, Automatic control systems (7th ed.) Prentice-Hall, Inc.. ,(1995)
R. M. Robertson, K. G. Pearson, Neural circuits in the flight system of the locust. Journal of Neurophysiology. ,vol. 53, pp. 110- 128 ,(1985) , 10.1152/JN.1985.53.1.110
Sten Grillner, Serge Rossignol, Avis H. Cohen, Neural Control of Rhythmic Movements in Vertebrates ,(1988)
Benjamin C. Kuo, Automatic Control Systems ,(1962)
D. H. Perkel, J. H. Schulman, T. H. Bullock, G. P. Moore, J. P. Segundo, Pacemaker Neurons: Effects of Regularly Spaced Synaptic Input Science. ,vol. 145, pp. 61- 63 ,(1964) , 10.1126/SCIENCE.145.3627.61
J. J. Collins, I. Stewart, A group-theoretic approach to rings of coupled biological oscillators Biological Cybernetics. ,vol. 71, pp. 95- 103 ,(1994) , 10.1007/BF00197312
J. J. Collins, Ian Stewart, Hexapodal gaits and coupled nonlinear oscillator models Biological Cybernetics. ,vol. 68, pp. 287- 298 ,(1993) , 10.1007/BF00201854
R. J. Butera, J. W. Clark, J. H. Byrne, John Rinzel, Dissection and reduction of a modeled bursting neuron Journal of Computational Neuroscience. ,vol. 3, pp. 199- 223 ,(1996) , 10.1007/BF00161132