Characterizing r-perfect codes in direct products of two and three cycles

作者: Janja Jerebic , Sandi Klavžar , Simon Špacapan

DOI: 10.1016/J.IPL.2004.12.010

关键词:

摘要: An r-perfect code of a graph G = (V, E) is set C ⊆ V such that the r-balls centered at vertices form partition V. It proved direct product Cm and Cn (r ≥ 1, m, n 2r + 1) contains an if only m are each multiple 1)2 r2 Cm, Cn, Cl n, l r3 1)3. The corresponding r-codes essentially unique. Also, codes in C2r × 2, 2r) characterized.

参考文章(19)
Pavol Hell, AN INTRODUCTION TO THE CATEGORY OF GRAPHS Annals of the New York Academy of Sciences. ,vol. 328, pp. 120- 136 ,(1979) , 10.1111/J.1749-6632.1979.TB17773.X
Solomon W. Golomb, Lloyd R. Welch, Perfect Codes in the Lee Metric and the Packing of Polyominoes SIAM Journal on Applied Mathematics. ,vol. 18, pp. 302- 317 ,(1970) , 10.1137/0118025
Paul M. Weichsel, THE KRONECKER PRODUCT OF GRAPHS Proceedings of the American Mathematical Society. ,vol. 13, pp. 47- 52 ,(1962) , 10.1090/S0002-9939-1962-0133816-6
P.K. Jha, Perfect r-domination in the Kronecker product of three cycles IEEE Transactions on Circuits and Systems I-regular Papers. ,vol. 49, pp. 89- 92 ,(2002) , 10.1109/81.974881
K.W. Tang, S.A. Padubidri, Diagonal and toroidal mesh networks IEEE Transactions on Computers. ,vol. 43, pp. 815- 826 ,(1994) , 10.1109/12.293260
Hyunseung Choo, Seong-Moo Yoo, Hee Yong Youn, Processor scheduling and allocation for 3D torus multicomputer systems IEEE Transactions on Parallel and Distributed Systems. ,vol. 11, pp. 475- 484 ,(2000) , 10.1109/71.852400
Hsing-Lung Chen, Nian-Feng Tzeng, Efficient resource placement in hypercubes using multiple-adjacency codes IEEE Transactions on Computers. ,vol. 43, pp. 23- 33 ,(1994) , 10.1109/12.250606
Antoaneta Klobučar, K-dominating sets of $P_(2k+2)\times P_n$ and $P_m\times P_n$ Ars Combinatoria. ,vol. 58, pp. 279- 288 ,(2001)