A Random Effect Model in Metric Multidimensional Unfolding

作者: Kohei ADACHI

DOI: 10.2333/JBHMK.27.12

关键词:

摘要: A metric multidimensional unfolding procedure is proposed to represent the rows (individuals) and columns (items) of a proximity data matrix as points in low-dimensional space. The based on random effect model which allows us avoid problem incidental parameters. In model, individual are regarded normally-distributed variables, while item fixed probability density derived from assumption that true linear function distance point observed perturbed by error. marginal likelihood obtained integrating out maximized using EM algorithm with generalized SMACOF algorithm. evaluated simulation study applied preference rating data.

参考文章(31)
Hiroshi Hojo, A marginalization model for the multidimensional unfolding analysis of ranking data Japanese Psychological Research. ,vol. 39, pp. 33- 42 ,(1997) , 10.1111/1468-5884.00034
Geert De Soete, J.Douglas Carroll, Wayne S. DeSarbo, The wandering ideal point model: A probabilistic multidimensional unfolding model for paired comparisons data Journal of Mathematical Psychology. ,vol. 30, pp. 28- 41 ,(1986) , 10.1016/0022-2496(86)90040-4
David Andrich, The Application of an Unfolding Model of the PIRT Type to the Measurement of Attitude Applied Psychological Measurement. ,vol. 12, pp. 33- 51 ,(1988) , 10.1177/014662168801200105
J. O. Ramsay, Maximum likelihood estimation in multidimensional scaling Psychometrika. ,vol. 42, pp. 241- 266 ,(1977) , 10.1007/BF02294052
Michael J. Greenacre, Michael W. Browne, An efficient alternating least-squares algorithm to perform multidimensional unfolding Psychometrika. ,vol. 51, pp. 241- 250 ,(1986) , 10.1007/BF02293982
Joseph L. Zinnes, Richard A. Griggs, Probabilistic, multidimensional unfolding analysis Psychometrika. ,vol. 39, pp. 327- 350 ,(1974) , 10.1007/BF02291707