An efficient alternating least-squares algorithm to perform multidimensional unfolding

作者: Michael J. Greenacre , Michael W. Browne

DOI: 10.1007/BF02293982

关键词:

摘要: We consider the problem of least-squares fitting squared distances in unfolding. An alternating procedure is proposed which fixes row or column configuration turn and finds global optimum objective criterion with respect to free parameters, iterating this fashion until convergence reached. A considerable simplification algorithm results, namely that conditional identified by performing a single unidimensional search for each point, irrespective dimensionality unfolding solution.

参考文章(13)
Clyde H. Coombs, Richard C. Kao, On a connection between factor analysis and multidimensional unfolding Psychometrika. ,vol. 25, pp. 219- 231 ,(1960) , 10.1007/BF02289726
John Ross, Norman Cliff, A generalization of the interpoint distance model Psychometrika. ,vol. 29, pp. 167- 176 ,(1964) , 10.1007/BF02289698
Peter H. Schönemann, Ming Mei Wang, An individual difference model for the multidimensional analysis of preference data Psychometrika. ,vol. 37, pp. 275- 309 ,(1972) , 10.1007/BF02306784
R. Fletcher, M. J. D. Powell, A Rapidly Convergent Descent Method for Minimization The Computer Journal. ,vol. 6, pp. 163- 168 ,(1963) , 10.1093/COMJNL/6.2.163
Clyde H. Coombs, Psychological scaling without a unit of measurement. Psychological Review. ,vol. 57, pp. 145- 158 ,(1950) , 10.1037/H0060984
Forrest W. Young, Yoshio Takane, Rostyslaw Lewyckyj, Three notes on ALSCAL Psychometrika. ,vol. 43, pp. 433- 435 ,(1978) , 10.1007/BF02293652
J. O. Ramsay, Solving implicit equations in psychometric data analysis Psychometrika. ,vol. 40, pp. 337- 360 ,(1975) , 10.1007/BF02291762
Peter H. Scho̎nemann, ON METRIC MULTIDIMENSIONAL UNFOLDING Psychometrika. ,vol. 1969, pp. 349- 366 ,(1970) , 10.1002/J.2333-8504.1969.TB00773.X