Completeness of the isomorphism problem for separable C*-algebras

作者: Marcin Sabok

DOI: 10.1007/S00222-015-0625-5

关键词:

摘要: This paper studies the descriptive set-theoretical complexity of isomorphism problem for separable C*-algebras. We prove that (simple, AI) C*-algebras is complete in class orbit equivalence relations. means any arising from a continuous action completely metrizable group can be reduced to simple, AI

参考文章(72)
George A. Elliott, The Classification Problem for Amenable C*-Algebras Birkhäuser Basel. pp. 922- 932 ,(1995) , 10.1007/978-3-0348-9078-6_85
Greg Hjorth, Borel Equivalence Relations Springer, Dordrecht. pp. 297- 332 ,(2010) , 10.1007/978-1-4020-5764-9_5
Stephen S. Gelbart, Gustave Choquet, Tim Lance, Jerrold E. Marsden, Lectures on analysis ,(1969)
Charles Joiner, On Urysohn's universal separable metric space Fundamenta Mathematicae. ,vol. 73, pp. 51- 58 ,(1971) , 10.4064/FM-73-1-51-58
Mikhael Gromov, Misha Katz, Pierre Pansu, Stephen Semmes, None, Metric Structures for Riemannian and Non-Riemannian Spaces ,(1999)
Ilijas Farah, Logic and operator algebras arXiv: Logic. ,(2014)
Alexander S. Kechris, Classical descriptive set theory ,(1987)
Joram Lindenstrauss, W. B. Johnson, Handbook of the Geometry of Banach spaces Elsevier Science B.V.. ,vol. 2, ,(2001)