The complexity of the homeomorphism relation between compact metric spaces

作者: Joseph Zielinski

DOI: 10.1016/J.AIM.2015.11.051

关键词:

摘要: Abstract We determine the exact complexity of classifying compact metric spaces up to homeomorphism. More precisely, homeomorphism relation on is Borel bi-reducible with complete orbit equivalence Polish group actions. Consequently, same holds for isomorphism between separable commutative C*-algebras and isometry C(K)-spaces.

参考文章(16)
Alexander S. Kechris, Classical descriptive set theory ,(1987)
Joram Lindenstrauss, W. B. Johnson, Handbook of the Geometry of Banach spaces Elsevier Science B.V.. ,vol. 2, ,(2001)
Alexander S. Kechris, Howard Paul Becker, The descriptive set theory of Polish group actions ,(1996)
S. A. Morris, V. Pestov, A topological generalization of the HigmanNeumannNeumann theorem Journal of Group Theory. ,vol. 1, ,(1998) , 10.1515/JGTH.1998.010
Edgar R. Lorch, On some properties of the metric subalgebras ofℓ Integral Equations and Operator Theory. ,vol. 4, pp. 422- 434 ,(1981) , 10.1007/BF01697974
George A. Elliott, Ilijas Farah, Vern I. Paulsen, Christian Rosendal, Andrew S. Toms, Asger Törnquist, The isomorphism relation for separable C*-algebras Mathematical Research Letters. ,vol. 20, pp. 1071- 1080 ,(2013) , 10.4310/MRL.2013.V20.N6.A6
Su Gao, Alexander S. Kechris, On the classification of Polish metric spaces up to isometry Memoirs of the American Mathematical Society. ,vol. 161, pp. 0- 0 ,(2003) , 10.1090/MEMO/0766