Efficient bit-parallel multipliers over finite fields GF(2m)

作者: Chiou-Yng Lee , Pramod Kumar Meher

DOI: 10.1016/J.COMPELECENG.2010.01.001

关键词:

摘要: Hardware implementation of multiplication in finite field GF(2^m) based on sparse polynomials is found to be advantageous terms space-complexity as well the time-complexity. In this paper, we present a new permutation method construct irreducible like-trinomials form (x+1)^m+(x+1)^n+1 for efficient bit-parallel multipliers. For implementing multiplications such polynomials, have defined like-polynomial basis (LPB) an alternative original polynomial GF(2^m). We shown further that modular arithmetic binary equivalent trinomials. order design multipliers composite fields, another convert into forms (x^2+x+1)^m+(x^2+x+1)^n+1, (x^2+x)^m+(x^2+x)^n+1 and (x^4+x+1)^m+(x^4+x+1)^n+1. The proposed multiplier over GF(2^4^m) offer saving about 33% 42.8% additions corresponding existing architectures.

参考文章(32)
Rana Barua, Palash Sarkar, Ratna Dutta, Pairing-Based Cryptographic Protocols : A Survey. IACR Cryptology ePrint Archive. ,vol. 2004, pp. 64- ,(2004)
Chiou Yng Lee, Low-Latency Bit-Parallel Systolic Multiplier for Irreducible x m + x n + 1 with GCD ( m , n ) = 1 IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. ,vol. 86, pp. 2844- 2852 ,(2003)
Jean-Luc Beuchat, Nicolas Brisebarre, Jérémie Detrey, Eiji Okamoto, Francisco Rodríguez-Henríquez, A Comparison between Hardware Accelerators for the Modified Tate Pairing over $\mathbb{F}_{2^m}$ and $\mathbb{F}_{3^m}$ Pairing-Based Cryptography – Pairing 2008. ,vol. 5209, pp. 297- 315 ,(2008) , 10.1007/978-3-540-85538-5_20
Steven D. Galbraith, Keith Harrison, David Soldera, Implementing the Tate Pairing algorithmic number theory symposium. pp. 324- 337 ,(2002) , 10.1007/3-540-45455-1_26
Elisa Gorla, Christoph Puttmann, Jamshid Shokrollahi, Explicit formulas for efficient multiplication in F 3 6m international conference on selected areas in cryptography. pp. 173- 183 ,(2007)
Erik De Win, Antoon Bosselaers, Servaas Vandenberghe, Peter De Gersem, Joos Vandewalle, A Fast Software Implementation for Arithmetic Operations in GF(2n) international cryptology conference. pp. 65- 76 ,(1996) , 10.1007/BFB0034836
Paulo SLM Barreto, Hae Y Kim, Ben Lynn, Michael Scott, None, Efficient Algorithms for Pairing-Based Cryptosystems Advances in Cryptology — CRYPTO 2002. pp. 354- 369 ,(2002) , 10.1007/3-540-45708-9_23
Joseph L. Yucas, Gary L. Mullen, Self-Reciprocal Irreducible Polynomials Over Finite Fields Designs, Codes and Cryptography. ,vol. 33, pp. 275- 281 ,(2004) , 10.1023/B:DESI.0000036251.41345.1F
C. Paar, P. Fleischmann, P. Roelse, Efficient multiplier architectures for Galois fields GF(2/sup 4n/) IEEE Transactions on Computers. ,vol. 47, pp. 162- 170 ,(1998) , 10.1109/12.663762
Chiou-Yng Lee, Low complexity bit-parallel systolic multiplier over GF(2m) using irreducible trinomials IEE Proceedings - Computers and Digital Techniques. ,vol. 150, pp. 39- 42 ,(2003) , 10.1049/IP-CDT:20030061