Observability, Predictability and Chaos

作者: D. I. Wallace

DOI: 10.1007/978-1-4612-3704-4_26

关键词:

摘要: The purpose of this paper is to examine in detail the questions involved Example 10 Martin’s article (also volume). It arises from following very general question. Given a manifold with flow on it and given real valued function manifold, under what circumstances can distinguish orbits different points? That is, if h ∈ C ∞(M) φ flow, then $$h(\Phi (x,t)) = h(\Phi (y,t))$$ for all t, does imply that x= y? If so, we say observesthe pair (M, φ), or triple (M,φ,h) observable.

参考文章(8)
Robert J. Zimmer, Ergodic Theory and Semisimple Groups ,(1984)
C. I. Byrnes, W. Dayawansa, C. F. Martin, On the topology and geometry of universally observable systems conference on decision and control. ,vol. 26, pp. 963- 965 ,(1987) , 10.1109/CDC.1987.272538
A. Del Junco, M. Keane, On generic points in the Cartesian square of Chacón's transformation Ergodic Theory and Dynamical Systems. ,vol. 5, pp. 59- 69 ,(1985) , 10.1017/S0143385700002753
Andrés del Junco, On minimal self-joinings in topological dynamics Ergodic Theory and Dynamical Systems. ,vol. 7, pp. 211- 227 ,(1987) , 10.1017/S0143385700003965
Martin C. Gutzwiller, Stochastic behavior in quantum scattering Physica D: Nonlinear Phenomena. ,vol. 7, pp. 341- 355 ,(1983) , 10.1016/0167-2789(83)90138-0
Douglas McMahon, An example of a universally observable dynamical system Systems & Control Letters. ,vol. 8, pp. 247- 248 ,(1987) , 10.1016/0167-6911(87)90034-X
Armand Borel, Harish-Chandra, Arithmetic Subgroups of Algebraic Groups The Annals of Mathematics. ,vol. 75, pp. 485- 535 ,(1962) , 10.2307/1970210
13. Quantifying chaos with Lyapunov exponents Princeton University Press. pp. 273- 290 ,(1986) , 10.1515/9781400858156.273