The construction of a universally observable flow on the torus

作者: A. DeStefano , G.R. Hall

DOI: 10.1109/CDC.1998.757789

关键词:

摘要: We give a description of the construction class dynamical systems on two-dimensional torus which are universally observable, i.e., observable by every continuous nonconstant real-valued function torus. motivated work McMahon (1987) who proved that three-dimensional manifolds with horocycle flow have this property. examine example and able to sufficient conditions for be then construct satisfies these conditions. The proofs involve techniques concepts from topological dynamics, number theory.

参考文章(12)
D. I. Wallace, Observability, Predictability and Chaos Birkhäuser Boston. pp. 365- 374 ,(1989) , 10.1007/978-1-4612-3704-4_26
Clyde F. Martin, Observability, Interpolation and Related Topics Birkhäuser Boston. pp. 209- 232 ,(1989) , 10.1007/978-1-4612-3704-4_15
C. I. Byrnes, W. Dayawansa, C. F. Martin, On the topology and geometry of universally observable systems conference on decision and control. ,vol. 26, pp. 963- 965 ,(1987) , 10.1109/CDC.1987.272538
H. B. Keynes, D. Newton, Real prime flows Transactions of the American Mathematical Society. ,vol. 217, pp. 237- 255 ,(1976) , 10.1090/S0002-9947-1976-0400189-5
Harry Furstenberg, Harvey Keynes, Leonard Shapiro, Prime flows in topological dynamics Israel Journal of Mathematics. ,vol. 14, pp. 26- 38 ,(1973) , 10.1007/BF02761532
M. Nerurkar, Observability and topological dynamics Journal of Dynamics and Differential Equations. ,vol. 3, pp. 273- 287 ,(1991) , 10.1007/BF01047710
Douglas McMahon, An example of a universally observable dynamical system Systems & Control Letters. ,vol. 8, pp. 247- 248 ,(1987) , 10.1016/0167-6911(87)90034-X
Alisa DeStefano, G. R. Hall, An Example of a Universally Observable Flow on the Torus Siam Journal on Control and Optimization. ,vol. 36, pp. 1207- 1224 ,(1998) , 10.1137/S0363012996308417
Michael Robert Herman, Sur la Conjugaison Différentiable des Difféomorphismes du Cercle a des Rotations Publications Mathématiques de l'IHÉS. ,vol. 49, pp. 5- 233 ,(1979) , 10.1007/BF02684798
C. F. Martin, C. I. Byrnes, Global observability and detectability: an overview Springer Berlin Heidelberg. pp. 71- 89 ,(1988) , 10.1007/BFB0043177