Mining high-utility itemsets based on particle swarm optimization

作者: Jerry Chun-Wei Lin , Lu Yang , Philippe Fournier-Viger , Jimmy Ming-Thai Wu , Tzung-Pei Hong

DOI: 10.1016/J.ENGAPPAI.2016.07.006

关键词:

摘要: High-utility itemset mining (HUIM) is a critical issue in recent years since it can be used to reveal the profitable products by considering both the quantity and profit factors instead of …

参考文章(28)
Ansaf Salleb-Aouissi, Cyril Nortet, Christel Vrain, QuantMiner: a genetic algorithm for mining quantitative association rules international joint conference on artificial intelligence. pp. 1035- 1040 ,(2007)
Cory J. Butz, Howard J. Hamilton, Hong Yao, A Foundational Approach to Mining Itemset Utilities from Databases. siam international conference on data mining. pp. 482- 486 ,(2004)
Philippe Fournier-Viger, Cheng-Wei Wu, Vincent S. Tseng, Novel Concise Representations of High Utility Itemsets Using Generator Patterns advanced data mining and applications. ,vol. 8933, pp. 30- 43 ,(2014) , 10.1007/978-3-319-14717-8_3
Russel Pears, Yun Sing Koh, Weighted Association Rule Mining Using Particle Swarm Optimization New Frontiers in Applied Data Mining. pp. 327- 338 ,(2012) , 10.1007/978-3-642-28320-8_28
Ramakrishnan Srikant, Rakesh Agrawal, Fast Algorithms for Mining Association Rules in Large Databases very large data bases. pp. 487- 499 ,(1994)
Muhammd Ilyas Menhas, MinRui Fei, Ling Wang, Xiping Fu, A novel hybrid binary PSO algorithm international conference on swarm intelligence. pp. 93- 100 ,(2011) , 10.1007/978-3-642-21515-5_12
Morteza Zihayat, Aijun An, Mining top-k high utility patterns over data streams Information Sciences. ,vol. 285, pp. 138- 161 ,(2014) , 10.1016/J.INS.2014.01.045
Hong Yao, Howard J. Hamilton, Mining itemset utilities from transaction databases data and knowledge engineering. ,vol. 59, pp. 603- 626 ,(2006) , 10.1016/J.DATAK.2005.10.004
Philippe Fournier-Viger, Souleymane Zida, FOSHU: faster on-shelf high utility itemset mining -- with or without negative unit profit acm symposium on applied computing. pp. 857- 864 ,(2015) , 10.1145/2695664.2695823