Magnetic curves in the real special linear group

作者: Marian Ioan Munteanu , Juni-ichi Inoguchi

DOI: 10.4310/ATMP.2019.V23.N8.A6

关键词:

摘要: We investigate contact magnetic curves in the real special linear group of degree 2. They are geodesics Hopf tubes over projection curve. prove that periodic SL(2,R) can be quantized set rational numbers. Finally, we study homogeneous trajectories and show they project to horocycles H2(-4).

参考文章(16)
O Kowalski, Lieven Vanhecke, Riemannian-manifolds with homogeneous geodesics Bollettino Della Unione Matematica Italiana. pp. 189- 246 ,(1991)
Jun-ichi Inoguchi, Invariant minimal surfaces in the real special linear group of degree 2 arXiv: Differential Geometry. ,(2009)
Simona Luiza Druţă-Romaniuc, Jun-ichi Inoguchi, Marian Ioan Munteanu, Ana Irina Nistor, Magnetic curves in Sasakian manifolds Journal of Nonlinear Mathematical Physics. ,vol. 22, pp. 428- 447 ,(2021) , 10.1080/14029251.2015.1079426
Dennis DeTurck, Herman Gluck, Linking, twisting, writing, and helicity on the 2-sphere and in hyperbolic 3-space Journal of Differential Geometry. ,vol. 94, pp. 87- 128 ,(2013) , 10.4310/JDG/1361889062
R. Schoen, J. Wolfson, Minimizing Area Among Lagrangian Surfaces: The Mapping Problem Journal of Differential Geometry. ,vol. 58, pp. 1- 86 ,(2001) , 10.4310/JDG/1090348282
Alain Comtet, On the Landau Levels on the Hyperbolic Plane Annals of Physics. ,vol. 173, pp. 185- 209 ,(1987) , 10.1016/0003-4916(87)90098-4
Manuel Barros, José L. Cabrerizo, Manuel Fernández, Alfonso Romero, The Gauss-Landau-Hall problem on Riemannian surfaces Journal of Mathematical Physics. ,vol. 46, pp. 112905- ,(2005) , 10.1063/1.2136215
BOŠTJAN GABROVŠEK, MACIEJ MROCZKOWSKI, KNOTS IN THE SOLID TORUS UP TO 6 CROSSINGS Journal of Knot Theory and Its Ramifications. ,vol. 21, pp. 1250106- ,(2012) , 10.1142/S0218216512501064