KNOTS IN THE SOLID TORUS UP TO 6 CROSSINGS

作者: BOŠTJAN GABROVŠEK , MACIEJ MROCZKOWSKI

DOI: 10.1142/S0218216512501064

关键词:

摘要: We classify non-affine, prime knots in the solid torus up to 6 crossings. establish which of these are amphicheiral: almost all with symmetric Jones polynomial amphicheiral, but a few cases we use stronger invariants, such as HOMFLYPT and Kauffman skein modules, show that some not amphicheiral. Examples same different module presented. It follows from our computations, wrapping conjecture is true for

参考文章(3)
Jim Hoste, Mark E. Kidwell, Dichromatic link invariants Transactions of the American Mathematical Society. ,vol. 321, pp. 197- 229 ,(1990) , 10.1090/S0002-9947-1990-0961623-2
Jim Hoste, J{ózef H. Przytycki, An invariant of dichromatic links Proceedings of the American Mathematical Society. ,vol. 105, pp. 1003- 1007 ,(1989) , 10.1090/S0002-9939-1989-0989100-0
V. G. Turaev, Conway and Kauffman modules of a solid torus Journal of Mathematical Sciences. ,vol. 52, pp. 2799- 2805 ,(1990) , 10.1007/BF01099241