Knot invariants in lens spaces

作者: Boštjan Gabrovšek , Eva Horvat

DOI:

关键词:

摘要: In this survey we summarize results regarding the Kauffman bracket, HOMFLYPT, 2-variable and Dubrovnik skein modules, Alexander polynomial of links in lens spaces, which represent as mixed link diagrams. These invariants generalize corresponding knot polynomials classical case. We compare by means ability to distinguish between some difficult cases knots with certain symmetries.

参考文章(12)
Jozef H. Przytycki, History of Knot Theory arXiv: Geometric Topology. ,(2007)
Ioannis Diamantis, Sofia Lambropoulou, Braid equivalences in 3-manifolds with rational surgery description ☆ Topology and its Applications. ,vol. 194, pp. 269- 295 ,(2015) , 10.1016/J.TOPOL.2015.08.009
BOŠTJAN GABROVŠEK, MACIEJ MROCZKOWSKI, KNOTS IN THE SOLID TORUS UP TO 6 CROSSINGS Journal of Knot Theory and Its Ramifications. ,vol. 21, pp. 1250106- ,(2012) , 10.1142/S0218216512501064
Louis H. Kauffman, The conway polynomial Topology. ,vol. 20, pp. 101- 108 ,(1981) , 10.1016/0040-9383(81)90017-3
JIM HOSTE, JÓZEF H. PRZYTYCKI, THE (2, ∞)-SKEIN MODULE OF LENS SPACES: A GENERALIZATION OF THE JONES POLYNOMIAL Journal of Knot Theory and Its Ramifications. ,vol. 02, pp. 321- 333 ,(1993) , 10.1142/S0218216593000180
A. Cattabriga, E. Manfredi, L. Rigolli, EQUIVALENCE OF TWO DIAGRAM REPRESENTATIONS OF LINKS IN LENS SPACES AND ESSENTIAL INVARIANTS Acta Mathematica Hungarica. ,vol. 146, pp. 168- 201 ,(2015) , 10.1007/S10474-015-0475-Z
Xiao Song Lin, Representations of Knot Groups and Twisted Alexander Polynomials Acta Mathematica Sinica. ,vol. 17, pp. 361- 380 ,(2001) , 10.1007/S101140100122
E. Horvat, Boštjan Gabrovšek, On the Alexander polynomial of links in lens spaces arXiv: Geometric Topology. ,(2016) , 10.1142/S0218216519500494
Boštjan Gabrovšek, Tabulation of Prime Knots in Lens Spaces Mediterranean Journal of Mathematics. ,vol. 14, pp. 88- ,(2017) , 10.1007/S00009-016-0814-5
Sofia Lambropoulou, Ioannis Diamantis, An important step for the computation of the HOMFLYPT skein module of the lens spaces $L(p,1)$ via braids arXiv: Geometric Topology. ,(2018)