Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics

作者: Ikechukwu U. Okafor , Arvind Santhanakrishnan , Brandon D. Chaffins , Lucia Mirabella , John N. Oshinski

DOI: 10.1186/S12968-015-0154-9

关键词:

摘要: The development of clinically applicable fluid-structure interaction (FSI) models the left heart is inherently challenging when using in vivo cardiovascular magnetic resonance (CMR) data for validation, due to lack a well-controlled system where detailed measurements ventricular wall motion and flow field are available priori. purpose this study was (a) develop relevant, CMR-compatible physical model; (b) compare (LV) volume reconstructions hemodynamic obtained CMR laboratory-based experimental modalities. LV constructed from optically clear flexible silicone rubber. geometry based off healthy patient’s during peak systole. phantom attached simulator consisting an aorta, atrium, systemic resistance compliance elements. Experiments were conducted rate 70 bpm. Wall high speed stereo-photogrammetry (SP) cine-CMR, while digital particle image velocimetry (DPIV) phase-contrast (PC-CMR). model reproduced physiologically accurate hemodynamics (aortic pressure = 120/80 mmHg; cardiac output = 3.5 L/min). DPIV PC-CMR results center plane within ventricle matched, both qualitatively quantitatively, with atrium into having velocity about 1.15 m/s normalized through cycle computed matched closely that SP. mean difference between SP 5.5 ± 3.7 %. presented here can thus be used purposes of: acquiring validation FSI simulations, determining accuracy cine-CMR reconstruction methods, (c) conducting investigations effects altering anatomical variables on function under normal disease conditions.

参考文章(37)
Sebastian Krittian, Uwe Janoske, Herbert Oertel, Thomas Böhlke, Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics. Annals of Biomedical Engineering. ,vol. 38, pp. 1426- 1441 ,(2010) , 10.1007/S10439-009-9895-7
Jennifer A Moore, David A Steinman, C Ross Ethier, Computational blood flow modelling Journal of Biomechanics. ,vol. 31, pp. 179- 184 ,(1997) , 10.1016/S0021-9290(97)00125-5
Hiroshi Watanabe, Seiryo Sugiura, Hidenobu Kafuku, Toshiaki Hisada, Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. Biophysical Journal. ,vol. 87, pp. 2074- 2085 ,(2004) , 10.1529/BIOPHYSJ.103.035840
Matthias A. Dieringer, Jan Hentschel, Thiago de Quadros, Florian von Knobelsdorff-Brenkenhoff, Werner Hoffmann, Thoralf Niendorf, Jeanette Schulz-Menger, Design, construction, and evaluation of a dynamic MR compatible cardiac left ventricle model Medical Physics. ,vol. 39, pp. 4800- 4806 ,(2012) , 10.1118/1.4736954
Trung Bao Le, Fotis Sotiropoulos, On the three-dimensional vortical structure of early diastolic flow in a patient-specific left ventricle European Journal of Mechanics B-fluids. ,vol. 35, pp. 20- 24 ,(2012) , 10.1016/J.EUROMECHFLU.2012.01.013
Q. Long,, R. Merrifield,, G. Z. Yang, and, X. Y. Xu, P. J. Kilner and, D. N. Firmin, The influence of inflow boundary conditions on intra left ventricle flow predictions. Journal of Biomechanical Engineering-transactions of The Asme. ,vol. 125, pp. 922- 927 ,(2003) , 10.1115/1.1635404
F. DOMENICHINI, G. PEDRIZZETTI, B. BACCANI, Three-dimensional filling flow into a model left ventricle Journal of Fluid Mechanics. ,vol. 539, pp. 179- 198 ,(2005) , 10.1017/S0022112005005550
Won Yong Kim, Peter G. Walker, Erik M. Pedersen, Jens K. Poulsen, Sten Oyre, Kim Houlind, Ajit P. Yoganathan, Left ventricular blood flow patterns in normal subjects: A quantitative analysis by three-dimensional magnetic resonance velocity mapping Journal of the American College of Cardiology. ,vol. 26, pp. 224- 238 ,(1995) , 10.1016/0735-1097(95)00141-L
F. Domenichini, G. Querzoli, A. Cenedese, G. Pedrizzetti, Combined experimental and numerical analysis of the flow structure into the left ventricle. Journal of Biomechanics. ,vol. 40, pp. 1988- 1994 ,(2007) , 10.1016/J.JBIOMECH.2006.09.024