Convexity of the cost functional in an optimal control problem for a class of positive switched systems

作者: Patrizio Colaneri , Richard H. Middleton , Zhiyong Chen , Danilo Caporale , Franco Blanchini

DOI: 10.1016/J.AUTOMATICA.2014.02.025

关键词:

摘要: Abstract This paper deals with the optimal control of a class positive switched systems. The main feature this is that switching alters only diagonal entries dynamic matrix. input represented by signal itself and problem minimizing linear combination final state variable. First, system embedded in bilinear systems variables living simplex, for each time point. result cost convex respect to variables. ensures any Pontryagin solution optimal. Algorithms find are then presented an example, taken from simplified model HIV mutation mitigation discussed.

参考文章(23)
Lorenzo Farina, Sergio Rinaldi, Positive Linear Systems: Theory and Applications ,(2000)
Velimir Jurdjevic, Geometric control theory ,(1996)
Lev B. Rapoport, Asymptotic stability and periodic motions of selector-linear differential inclusions Springer, Berlin, Heidelberg. pp. 269- 285 ,(1996) , 10.1007/BFB0027570
José Luis Mancilla-Aguilar, Rafael Antonio García, Some results on the stabilization of switched systems Automatica. ,vol. 49, pp. 441- 447 ,(2013) , 10.1016/J.AUTOMATICA.2012.11.002
Vahid S. Bokharaie, Oliver Mason, Fabian R. Wirth, Mustapha Ait Rami, Stability Criteria for SIS Epidemiological Models under Switching Policies arXiv: Dynamical Systems. ,(2013)
Esteban A. Hernandez-Vargas, Patrizio Colaneri, Richard H. Middleton, Optimal therapy scheduling for a simplified HIV infection model Automatica. ,vol. 49, pp. 2874- 2880 ,(2013) , 10.1016/J.AUTOMATICA.2013.06.001
F. Blanchini, P. Colaneri, M. E. Valcher, Co-Positive Lyapunov Functions for the Stabilization of Positive Switched Systems IEEE Transactions on Automatic Control. ,vol. 57, pp. 3038- 3050 ,(2012) , 10.1109/TAC.2012.2199169