Effect of magnesium chloride (2:1 electrolyte) on the aqueous solution behavior of some saccharides over the temperature range of 288.15-318.15 K: a volumetric approach.

作者: Parampaul K Banipal , Amanpreet K Chahal nee Hundal , Tarlok S Banipal , None

DOI: 10.1016/J.CARRES.2010.07.021

关键词:

摘要: Abstract Infinite-dilution standard partial molar volumes, V 2 0 , for various mono-, di-, and trisaccharides, their derivatives (methyl glycosides) at molalities ranging from 0.04 to 0.12 mol kg−1 in aqueous solutions of magnesium chloride 0.5, 1.0, 2.0, 3.0 mol kg−1, have been evaluated over a range temperatures 288.15 318.15 K by density measurements employing vibrating-tube densimeter. These data utilized determine the corresponding volumes transfer, Δ t saccharides methyl glycosides water solutions. The values found be positive, magnitudes increase with an increasing concentration all cases. Partial expansion coefficients, ( ∂ / T ) P second thereof, estimated. magnitude increases temperature, indicating that hydration effects are strongly sensitive temperature. Pair higher order volumetric interaction coefficients (VAB, VABB) also obtained using McMillan–Mayer theory. parameters discussed terms solute (saccharide or glycoside)–co-solute (magnesium chloride) interactions thus used understand mixing due these interactions. results compared those earlier reported presence electrolytes. An attempt is made interpret properties stereochemistry solutes.

参考文章(34)
Danforth P. Miller, Juan J. de Pablo, Horacio Corti, Thermophysical properties of trehalose and its concentrated aqueous solutions. Pharmaceutical Research. ,vol. 14, pp. 578- 590 ,(1997) , 10.1023/A:1012192725996
Ronald Wilfred Gurney, Ionic processes in solution ,(1953)
Fereidoon Shahidi, Patrick G. Farrell, John T. Edward, Partial molar volumes of organic compounds in water. III. Carbohydrates Journal of Solution Chemistry. ,vol. 5, pp. 807- 816 ,(1976) , 10.1007/BF01167236
P.K. Banipal,, T.S. Banipal,b, J.C. Ahluwalia, B.S. Lark, Partial molar heat capacities and volumes of transfer of some saccharides from water to aqueous urea solutions atT = 298.15 K The Journal of Chemical Thermodynamics. ,vol. 32, pp. 1409- 1432 ,(2000) , 10.1006/JCHT.2000.0689
Tigran V. Chalikian, Ultrasonic and Densimetric Characterizations of the Hydration Properties of Polar Groups in Monosaccharides Journal of Physical Chemistry B. ,vol. 102, pp. 6921- 6926 ,(1998) , 10.1021/JP981418A
Nicole Morel-Desrosiers, Claude Lhermet, Jean-Pierre Morel, Interactions between cations and sugars. Part 7.—Gibbs energies, enthalpies and entropies of association of the trivalent lanthanide cations with ribose in water at 298.15 K Journal of the Chemical Society, Faraday Transactions. ,vol. 89, pp. 1223- 1228 ,(1993) , 10.1039/FT9938901223
William G. McMillan, Joseph E. Mayer, The Statistical Thermodynamics of Multicomponent Systems The Journal of Chemical Physics. ,vol. 13, pp. 276- 305 ,(1945) , 10.1063/1.1724036
Robert N. Goldberg, Yadu B. Tewari, Thermodynamic and Transport Properties of Carbohydrates and their Monophosphates: The Pentoses and Hexoses Journal of Physical and Chemical Reference Data. ,vol. 18, pp. 809- 880 ,(1989) , 10.1063/1.555831
Saskia A. Galema, Eduardo Howard, Jan B.F.N. Engberts, J.Raul Grigera, The effect of stereochemistry upon carbohydrate hydration. A molecular dynamics simulation of β-d-galactopyranose and (α,β)-d-talopyranose Carbohydrate Research. ,vol. 265, pp. 215- 225 ,(1994) , 10.1016/0008-6215(94)00241-X