Dynamic Chromatin Modification Sustains Epithelial-Mesenchymal Transition following Inducible Expression of Snail-1

作者: Sarah Javaid , Jianmin Zhang , Endre Anderssen , Josh C. Black , Ben S. Wittner

DOI: 10.1016/J.CELREP.2013.11.034

关键词:

摘要: Summary Epithelial-mesenchymal transition (EMT) is thought to contribute cancer metastasis, but its underlying mechanisms are not well understood. To define early steps in this cellular transformation, we analyzed human mammary epithelial cells with tightly regulated expression of Snail-1, a master regulator EMT. After Snail-1 induction, markers were repressed within 6 hr, and mesenchymal genes induced at 24 hr. binding target promoters was transient (6–48 hr) despite continued protein expression, it followed by both long-lasting chromatin changes. Pharmacological inhibition selected histone acetylation demethylation pathways suppressed the induction as maintenance Snail-1-mediated Thus, EMT involves an epigenetic switch that may be prevented or reversed use small-molecule inhibitors modifiers.

参考文章(41)
Jean Paul Thiery, Hervé Acloque, Ruby Y.J. Huang, M. Angela Nieto, Epithelial-Mesenchymal Transitions in Development and Disease Cell. ,vol. 139, pp. 871- 890 ,(2009) , 10.1016/J.CELL.2009.11.007
Maria J Blanco, Gema Moreno-Bueno, David Sarrio, Annamaria Locascio, Amparo Cano, José Palacios, M Angela Nieto, None, Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene. ,vol. 21, pp. 3241- 3246 ,(2002) , 10.1038/SJ.ONC.1205416
Philip A. Gregory, Andrew G. Bert, Emily L. Paterson, Simon C. Barry, Anna Tsykin, Gelareh Farshid, Mathew A. Vadas, Yeesim Khew-Goodall, Gregory J. Goodall, The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 Nature Cell Biology. ,vol. 10, pp. 593- 601 ,(2008) , 10.1038/NCB1722
Binhua P. Zhou, Jiong Deng, Weiya Xia, Jihong Xu, Yan M. Li, Mehmet Gunduz, Mien-Chie Hung, Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial–mesenchymal transition Nature Cell Biology. ,vol. 6, pp. 931- 940 ,(2004) , 10.1038/NCB1173
Sendurai A. Mani, Wenjun Guo, Mai-Jing Liao, Elinor Ng. Eaton, Ayyakkannu Ayyanan, Alicia Y. Zhou, Mary Brooks, Ferenc Reinhard, Cheng Cheng Zhang, Michail Shipitsin, Lauren L. Campbell, Kornelia Polyak, Cathrin Brisken, Jing Yang, Robert A. Weinberg, The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells Cell. ,vol. 133, pp. 704- 715 ,(2008) , 10.1016/J.CELL.2008.03.027
Berkley E Gryder, Quaovi H Sodji, Adegboyega K Oyelere, Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed Future Medicinal Chemistry. ,vol. 4, pp. 505- 524 ,(2012) , 10.4155/FMC.12.3
Rupa Sridharan, Jason Tchieu, Mike J. Mason, Robin Yachechko, Edward Kuoy, Steve Horvath, Qing Zhou, Kathrin Plath, Role of the Murine Reprogramming Factors in the Induction of Pluripotency Cell. ,vol. 136, pp. 364- 377 ,(2009) , 10.1016/J.CELL.2009.01.001
Tobias Brambrink, Ruth Foreman, G. Grant Welstead, Christopher J. Lengner, Marius Wernig, Heikyung Suh, Rudolf Jaenisch, Sequential Expression of Pluripotency Markers during Direct Reprogramming of Mouse Somatic Cells Cell Stem Cell. ,vol. 2, pp. 151- 159 ,(2008) , 10.1016/J.STEM.2008.01.004