Cancer-Subtype Classification Based on Gene Expression Data

作者:

DOI: 10.5302/J.ICROS.2004.10.12.1172

关键词:

摘要: Recently, the gene expression data, product of high-throughput technology, appeared in earnest and studies related with it (so-called bioinformatics) occupied an important position field biological medical research. The microarray is a revolutionary technology which enables us to monitor several thousands genes simultaneously thus gain insight into phenomena human body (e.g. mechanism cancer progression) at molecular level. To obtain useful information from such measurements, essential analyze data appropriate techniques. However high-dimensionality can bring about some problems as curse dimensionality singularity problem matrix computation, hence makes difficult apply conventional analysis methods. Therefore, development method effectively treat becomes challenging issue computational biology. This research focuses on selection classification for subtype discrimination based (microarray) data.

参考文章(31)
John Quackenbush, Computational analysis of microarray data Nature Reviews Genetics. ,vol. 2, pp. 418- 427 ,(2001) , 10.1038/35076576
Javed Khan, Jun S Wei, Markus Ringner, Lao H Saal, Marc Ladanyi, Frank Westermann, Frank Berthold, Manfred Schwab, Cristina R Antonescu, Carsten Peterson, Paul S Meltzer, None, Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks Nature Medicine. ,vol. 7, pp. 673- 679 ,(2001) , 10.1038/89044
Jianhua Xu, Xuegong Zhang, Yanda Li, None, Kernel MSE algorithm: a unified framework for KFD, LS-SVM and KRR international joint conference on neural network. ,vol. 2, pp. 1486- 1491 ,(2001) , 10.1109/IJCNN.2001.939584
Sandrine Dudoit, Jane Fridlyand, Terence P Speed, None, Comparison of discrimination methods for the classification of tumors using gene expression data Journal of the American Statistical Association. ,vol. 97, pp. 77- 87 ,(2002) , 10.1198/016214502753479248
Gavin Sherlock, Analysis of large-scale gene expression data. Current Opinion in Immunology. ,vol. 12, pp. 201- 205 ,(2000) , 10.1016/S0952-7915(99)00074-6
Leo H Chiang, Evan L Russell, Richard D Braatz, Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis Chemometrics and Intelligent Laboratory Systems. ,vol. 50, pp. 243- 252 ,(2000) , 10.1016/S0169-7439(99)00061-1
J.-H. Cho, D. Lee, J.H. Park, K. Kim, I.-B. Lee, Optimal approach for classification of acute leukemia subtypes based on gene expression data. Biotechnology Progress. ,vol. 18, pp. 847- 854 ,(2002) , 10.1021/BP025517O
Ingrid Hedenfalk, David Duggan, Yidong Chen, Michael Radmacher, Michael Bittner, Richard Simon, Paul Meltzer, Barry Gusterson, Manel Esteller, Mark Raffeld, Zohar Yakhini, Amir Ben-Dor, Edward Dougherty, Juha Kononen, Lukas Bubendorf, Wilfrid Fehrle, Stefania Pittaluga, Sofia Gruvberger, Niklas Loman, Oskar Johannsson, Håkan Olsson, Benjamin Wilfond, Guido Sauter, Olli-P. Kallioniemi, Åke Borg, Jeffrey Trent, Gene-Expression Profiles in Hereditary Breast Cancer The New England Journal of Medicine. ,vol. 344, pp. 539- 548 ,(2001) , 10.1056/NEJM200102223440801
Marianne Defernez, E.Katherine Kemsley, THE USE AND MISUSE OF CHEMOMETRICS FOR TREATING CLASSIFICATION PROBLEMS Trends in Analytical Chemistry. ,vol. 16, pp. 216- 221 ,(1997) , 10.1016/S0165-9936(97)00015-0
Ying Lu, Jiawei Han, Cancer classification using gene expression data Information Systems. ,vol. 28, pp. 243- 268 ,(2003) , 10.1016/S0306-4379(02)00072-8