Steady-State Navier–Stokes Flows Past a Rotating Body: Leray Solutions are Physically Reasonable

作者: Giovanni P. Galdi , Mads Kyed

DOI: 10.1007/S00205-010-0350-6

关键词:

摘要: A rigid body, \({\fancyscript{B}}\), moves in a Navier–Stokes liquid, \({\fancyscript{L}}\), filling the whole space outside \({\fancyscript{B}}\). We assume that, when referred to frame attached nonzero velocity of center mass, ξ, and angular velocity, ω, \({\fancyscript{B}}\) are constant that flow \({\fancyscript{L}}\) is steady. Our main theorem implies every “weak” steady-state solution sense Leray is, fact, physically reasonable Finn, for data arbitrary “size”. Such improves generalizes an analogous famous result Babenko (Math USSR Sb 20:1–25, 1973), obtained case ω = 0.

参考文章(23)
Giovanni Paolo Galdi, Mathematical Problems Relating to the Navier-Stokes Equations World Scientific. ,(1992) , 10.1142/1551
J G Heywood, K Masuda, R Rautmann, V A Solonnikov, Theory of the Navier-Stokes equations World Scientific. ,(1998) , 10.1142/3629
Joanna Rencławowicz, Wojciech Zajączkowski, Parabolic and navier-stokes equations Institute of Mathematics, Polish Academy of Sciences. ,(2008)
Toshiaki Hishida, Yoshihiro Shibata, Decay estimates of the Stokes flow around a rotating obstacle(Kyoto Conference on the Navier-Stokes Equations and their Applications) 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu. ,vol. 1, pp. 167- 186 ,(2007)
Reinhard Farwig, An $L^q$-analysis of viscous fluid flow past a rotating obstacle Tohoku Mathematical Journal. ,vol. 58, pp. 129- 147 ,(2006) , 10.2748/TMJ/1145390210
Giovanni P. Galdi, Steady Flow of a Navier-Stokes Fluid around a Rotating Obstacle Journal of Elasticity. ,vol. 71, pp. 1- 31 ,(2003) , 10.1007/1-4020-2308-1_26