Learning a hierarchical representation of the yeast transcriptomic machinery using an autoencoder model

作者: Lujia Chen , Chunhui Cai , Vicky Chen , Xinghua Lu

DOI: 10.1186/S12859-015-0852-1

关键词:

摘要: Background A living cell has a complex, hierarchically organized signaling system that encodes and assimilates diverse environmental intracellular signals, it further transmits signals control cellular responses, including tightly controlled transcriptional program. An important yet challenging task in systems biology is to reconstruct data-driven manner. In this study, we investigate the utility of deep hierarchical neural networks learning representing organization yeast transcriptomic machinery.

参考文章(28)
Songjian Lu, Xinghua Lu, Integrating genome and functional genomics data to reveal perturbed signaling pathways in ovarian cancers. AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science. ,vol. 2012, pp. 72- 78 ,(2012)
Stefano Monti, Pablo Tamayo, Jill Mesirov, Todd Golub, Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data Machine Learning. ,vol. 52, pp. 91- 118 ,(2003) , 10.1023/A:1023949509487
Xinghua Lu, Milos Hauskrecht, Roger S Day, Modeling cellular processes with variational Bayesian cooperative vector quantizer. pacific symposium on biocomputing. pp. 533- 544 ,(2003) , 10.1142/9789812704856_0050
Paola Fabrizio, Fabiola Pozza, Scott D Pletcher, Christi M Gendron, Valter D Longo, Regulation of longevity and stress resistance by Sch9 in yeast. Science. ,vol. 292, pp. 288- 290 ,(2001) , 10.1126/SCIENCE.1059497
Caroline S. Hill, Richard Marais, Susan John, Judy Wynne, Stephen Dalton, Richard Treisman, Functional analysis of a growth factor-responsive transcription factor complex Cell. ,vol. 73, pp. 395- 406 ,(1993) , 10.1016/0092-8674(93)90238-L
Pascal Vincent, Hugo Larochelle, Yoshua Bengio, Pierre-Antoine Manzagol, Extracting and composing robust features with denoising autoencoders Proceedings of the 25th international conference on Machine learning - ICML '08. pp. 1096- 1103 ,(2008) , 10.1145/1390156.1390294
Ceren Alkim, Laurent Benbadis, Ulku Yilmaz, Z. Petek Cakar, Jean Marie François, Mechanisms other than activation of the iron regulon account for the hyper-resistance to cobalt of a Saccharomyces cerevisiae strain obtained by evolutionary engineering. Metallomics. ,vol. 5, pp. 1043- 1060 ,(2013) , 10.1039/C3MT00107E
J. C. Liao, R. Boscolo, Y.-L. Yang, L. M. Tran, C. Sabatti, V. P. Roychowdhury, Network component analysis: Reconstruction of regulatory signals in biological systems Proceedings of the National Academy of Sciences of the United States of America. ,vol. 100, pp. 15522- 15527 ,(2003) , 10.1073/PNAS.2136632100
Christopher T. Harbison, D. Benjamin Gordon, Tong Ihn Lee, Nicola J. Rinaldi, Kenzie D. Macisaac, Timothy W. Danford, Nancy M. Hannett, Jean-Bosco Tagne, David B. Reynolds, Jane Yoo, Ezra G. Jennings, Julia Zeitlinger, Dmitry K. Pokholok, Manolis Kellis, P. Alex Rolfe, Ken T. Takusagawa, Eric S. Lander, David K. Gifford, Ernest Fraenkel, Richard A. Young, Transcriptional regulatory code of a eukaryotic genome Nature. ,vol. 431, pp. 99- 104 ,(2004) , 10.1038/NATURE02800