High performance Cholesky and symmetric indefinite factorizations with applications

作者: Jonathan David Hogg

DOI:

关键词:

摘要: The process of factorizing a symmetric matrix using the Cholesky (LL ) or indefinite (LDL factorization A allows efficient solution systems Ax = b when is symmetric. This thesis describes development new serial and parallel techniques for this problem demonstrates them in setting interior point methods. In serial, effects various scalings are reported, fast robust mixed precision sparse solver developed. parallel, DAG-driven dense factorizations developed positive definite case. These achieve performance comparable with other world-leading implementations novel algorithm same family as those given by Buttari et al. problem. Performance these context an method assessed.

参考文章(103)
Bjarne S. Andersen, John A. Gunnels, Fred G. Gustavson, John K. Reid, Jerzy Waśniewski, A fully portable high performance minimal storage hybrid format Cholesky algorithm ACM Transactions on Mathematical Software. ,vol. 31, pp. 201- 227 ,(2005) , 10.1145/1067967.1067969
J. R. Bunch, B. N. Parlett, Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations SIAM Journal on Numerical Analysis. ,vol. 8, pp. 639- 655 ,(1971) , 10.1137/0708060
Cleve Ashcraft, Roger Grimes, The influence of relaxed supernode partitions on the multifrontal method ACM Transactions on Mathematical Software. ,vol. 15, pp. 291- 309 ,(1989) , 10.1145/76909.76910
J. J. Dongarra, Jeremy Du Croz, Sven Hammarling, I. S. Duff, A set of level 3 basic linear algebra subprograms ACM Transactions on Mathematical Software. ,vol. 16, pp. 1- 17 ,(1990) , 10.1145/77626.79170
Olaf Schenk, Klaus Gärtner, Solving unsymmetric sparse systems of linear equations with PARDISO Future Generation Computer Systems. ,vol. 20, pp. 475- 487 ,(2004) , 10.1016/J.FUTURE.2003.07.011
P. Hénon, P. Ramet, J. Roman, PASTIX: a high-performance parallel direct solver for sparse symmetric positive definite systems parallel computing. ,vol. 28, pp. 301- 321 ,(2002) , 10.1016/S0167-8191(01)00141-7
Dror Irony, Gil Shklarski, Sivan Toledo, Parallel and fully recursive multifrontal sparse Cholesky Future Generation Computer Systems. ,vol. 20, pp. 425- 440 ,(2004) , 10.1016/J.FUTURE.2003.07.007
Patrick R Amestoy, Timothy A Davis, Iain S Duff, None, An Approximate Minimum Degree Ordering Algorithm SIAM Journal on Matrix Analysis and Applications. ,vol. 17, pp. 886- 905 ,(1996) , 10.1137/S0895479894278952
J. D. Hogg, J. A. Scott, A fast and robust mixed-precision solver for the solution of sparse symmetric linear systems ACM Transactions on Mathematical Software. ,vol. 37, pp. 17- ,(2010) , 10.1145/1731022.1731027
John K. Reid, Jennifer A. Scott, Partial factorization of a dense symmetric indefinite matrix ACM Transactions on Mathematical Software. ,vol. 38, pp. 10- ,(2012) , 10.1145/2049673.2049674