A fast and robust mixed-precision solver for the solution of sparse symmetric linear systems

作者: J. D. Hogg , J. A. Scott

DOI: 10.1145/1731022.1731027

关键词:

摘要: On many current and emerging computing architectures, single-precision calculations are at least twice as fast double-precision calculations. In addition, the use of single precision may reduce pressure on memory bandwidth. The penalty for using solution linear systems is a potential loss accuracy in computed solutions. For sparse systems, mixed which iterative methods preconditioned by factorization can enable recovery high-precision solutions more quickly less than direct solver run arithmetic.In this article, we consider within solvers symmetric exploiting both reduction requirements performance gains. We develop practical algorithm to apply mixed-precision approach suggest parameters techniques minimize number solves required process. These experiments provide basis our new code HSL_MA79—a fast, robust, that included mathematical software library HSL.Numerical results wide range problems from applications presented.

参考文章(31)
Susan L. Graham, Marc Snir, Cynthia A. Patterson, Getting Up to Speed: The Future of Supercomputing ,(2013)
Jack Dongarra, Jakub Kurzak, Alfredo Buttari, Limitations of the PlayStation 3 for High Performance Cluster Computing ,(2007)
Iain S. Duff, Stéphane Pralet, Strategies for Scaling and Pivoting for Sparse Symmetric Indefinite Problems SIAM Journal on Matrix Analysis and Applications. ,vol. 27, pp. 313- 340 ,(2005) , 10.1137/04061043X
Iain S. Duff, Stéphane Pralet, Towards Stable Mixed Pivoting Strategies for the Sequential and Parallel Solution of Sparse Symmetric Indefinite Systems SIAM Journal on Matrix Analysis and Applications. ,vol. 29, pp. 1007- 1024 ,(2007) , 10.1137/050629598
Alfredo Buttari, Jack Dongarra, Julie Langou, Julien Langou, Piotr Luszczek, Jakub Kurzak, Mixed Precision Iterative Refinement Techniques for the Solution of Dense Linear Systems ieee international conference on high performance computing data and analytics. ,vol. 21, pp. 457- 466 ,(2007) , 10.1177/1094342007084026
J. J. Dongarra, Jeremy Du Croz, Sven Hammarling, I. S. Duff, A set of level 3 basic linear algebra subprograms ACM Transactions on Mathematical Software. ,vol. 16, pp. 1- 17 ,(1990) , 10.1145/77626.79170
Patrick R Amestoy, Timothy A Davis, Iain S Duff, None, An Approximate Minimum Degree Ordering Algorithm SIAM Journal on Matrix Analysis and Applications. ,vol. 17, pp. 886- 905 ,(1996) , 10.1137/S0895479894278952
M. Arioli, I. S. Duff, S. Gratton, S. Pralet, A Note on GMRES Preconditioned by a Perturbed $L D L^T$ Decomposition with Static Pivoting SIAM Journal on Scientific Computing. ,vol. 29, pp. 2024- 2044 ,(2007) , 10.1137/060661545
Iain S. Duff, MA57---a code for the solution of sparse symmetric definite and indefinite systems ACM Transactions on Mathematical Software. ,vol. 30, pp. 118- 144 ,(2004) , 10.1145/992200.992202
Timothy A. Davis, Yifan Hu, The university of Florida sparse matrix collection ACM Transactions on Mathematical Software. ,vol. 38, pp. 1- 25 ,(2011) , 10.1145/2049662.2049663