Textural mutual information based on cluster trees for multimodal deformable registration

作者: Mattias P. Heinrich , Mark Jenkinson , Sir Michael Brady , Julia A. Schnabel

DOI: 10.1109/ISBI.2012.6235849

关键词:

摘要: Mutual information (MI) has been widely used in image analysis tasks such as feature selection and registration. In particular, it is the most similarity measure for intensity based registration of multimodal images. However, a major drawback MI that does not take spatial neighbourhood into account. An effective way incorporating could be great benefit number challenging applications. We propose use cluster trees to efficiently incorporate textural from local voxel computation MI, while at same time limiting bins represent this higher-order information. This new metric optimised using Markov random field (MRF). apply our method dynamic lung CT volumes with simulated contrast. Experimental results show advantages technique compared standard mutual

参考文章(16)
Paul Viola, William M. Wells III, Alignment by Maximization of Mutual Information International Journal of Computer Vision. ,vol. 24, pp. 137- 154 ,(1997) , 10.1023/A:1007958904918
Yangming Ou, Aristeidis Sotiras, Nikos Paragios, Christos Davatzikos, DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting Medical Image Analysis. ,vol. 15, pp. 622- 639 ,(2011) , 10.1016/J.MEDIA.2010.07.002
F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, P. Suetens, Multimodality image registration by maximization of mutual information IEEE Transactions on Medical Imaging. ,vol. 16, pp. 187- 198 ,(1997) , 10.1109/42.563664
Peter Rogelj, Stanislav Kovačič, James C. Gee, Point similarity measures for non-rigid registration of multi-modal data Computer Vision and Image Understanding. ,vol. 92, pp. 112- 140 ,(2003) , 10.1016/S1077-3142(03)00116-4
Richard Castillo, Edward Castillo, Rudy Guerra, Valen E Johnson, Travis McPhail, Amit K Garg, Thomas Guerrero, A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Physics in Medicine and Biology. ,vol. 54, pp. 1849- 1870 ,(2009) , 10.1088/0031-9155/54/7/001
Qingxiong Yang, Liang Wang, Narendra Ahuja, A constant-space belief propagation algorithm for stereo matching computer vision and pattern recognition. pp. 1458- 1465 ,(2010) , 10.1109/CVPR.2010.5539797
F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, P. Suetens, Multi-modality image registration by maximization of mutual information Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis. pp. 14- 22 ,(1996) , 10.1109/MMBIA.1996.534053
M. Varma, A. Zisserman, Texture classification: are filter banks necessary? computer vision and pattern recognition. ,vol. 2, pp. 691- 698 ,(2003) , 10.1109/CVPR.2003.1211534
Yangming Ou, Christos Davatzikos, DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency Weighting information processing in medical imaging. ,vol. 21, pp. 50- 62 ,(2009) , 10.1007/978-3-642-02498-6_5
D. Loeckx, P. Slagmolen, F. Maes, D. Vandermeulen, P. Suetens, Nonrigid Image Registration Using Conditional Mutual Information IEEE Transactions on Medical Imaging. ,vol. 29, pp. 19- 29 ,(2010) , 10.1109/TMI.2009.2021843