Multiscale MRF optimization for robust registration of 2D biological data

作者: J. Samuel Preston , Sarang Joshi , Ross Whitaker

DOI: 10.1109/ISBI.2015.7163873

关键词:

摘要: Discrete formulations of image registration offer the promise dense deformations via optimizations robust to large motions or poor initialization. However, many available efficient algorithms are not well suited medical biological data. We propose a novel multiscale Markov Random Field formulation for registration, which reduces number labels needed at each scale while preserving ability represent dense, fine-grained feature matches. The nature algorithm also allows arbitrary sub-voxel accuracy, and we further simple extension grants measure rotational invariance an matching term.

参考文章(13)
Ignacio Arganda-Carreras, Carlos OS Sorzano, Roberto Marabini, José María Carazo, Carlos Ortiz-de-Solorzano, Jan Kybic, None, Consistent and Elastic Registration of Histological Sections Using Vector-Spline Regularization Computer Vision Approaches to Medical Image Analysis. pp. 85- 95 ,(2006) , 10.1007/11889762_8
A. Roozgard, N. Barzigar, S. Cheng, P. Verma, Medical Image registration using sparse coding and belief propagation international conference of the ieee engineering in medicine and biology society. ,vol. 2012, pp. 1141- 1144 ,(2012) , 10.1109/EMBC.2012.6346137
Mattias P. Heinrich, Mark Jenkinson, Sir Michael Brady, Julia A. Schnabel, Textural mutual information based on cluster trees for multimodal deformable registration 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI). pp. 1471- 1474 ,(2012) , 10.1109/ISBI.2012.6235849
R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen, C. Rother, A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 30, pp. 1068- 1080 ,(2008) , 10.1109/TPAMI.2007.70844
Qingxiong Yang, Liang Wang, Narendra Ahuja, A constant-space belief propagation algorithm for stereo matching computer vision and pattern recognition. pp. 1458- 1465 ,(2010) , 10.1109/CVPR.2010.5539797
Ben Glocker, Nikos Komodakis, Georgios Tziritas, Nassir Navab, Nikos Paragios, Dense image registration through MRFs and efficient linear programming. Medical Image Analysis. ,vol. 12, pp. 731- 741 ,(2008) , 10.1016/J.MEDIA.2008.03.006
Ben Glocker, Aristeidis Sotiras, Nikos Komodakis, Nikos Paragios, Deformable Medical Image Registration: Setting the State of the Art with Discrete Methods* Annual Review of Biomedical Engineering. ,vol. 13, pp. 219- 244 ,(2011) , 10.1146/ANNUREV-BIOENG-071910-124649
Alexander Shekhovtsov, Ivan Kovtun, Václav Hlaváč, Efficient MRF deformation model for non-rigid image matching Computer Vision and Image Understanding. ,vol. 112, pp. 91- 99 ,(2008) , 10.1016/J.CVIU.2008.06.006
Y. Boykov, O. Veksler, R. Zabih, Fast approximate energy minimization via graph cuts IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 23, pp. 1222- 1239 ,(2001) , 10.1109/34.969114
Albert Cardona, Stephan Saalfeld, Johannes Schindelin, Ignacio Arganda-Carreras, Stephan Preibisch, Mark Longair, Pavel Tomancak, Volker Hartenstein, Rodney J. Douglas, TrakEM2 software for neural circuit reconstruction PLOS ONE. ,vol. 7, ,(2012) , 10.1371/JOURNAL.PONE.0038011