Efficient MRF deformation model for non-rigid image matching

作者: Alexander Shekhovtsov , Ivan Kovtun , Václav Hlaváč

DOI: 10.1016/J.CVIU.2008.06.006

关键词:

摘要: We propose a novel MRF-based model for deformable image matching (also known as registration). The deformation is described by field of discrete variables, representing displacements (blocks of) pixels. Discontinuities in the are prohibited imposing hard pairwise constraints model. Exact maximum posteriori inference intractable and we apply linear programming relaxation technique. show that, when reformulated form two coupled fields x- y-displacements, problem leads to simpler which sequential tree-reweighted message passing (TRW-S) algorithm [Wainwright-03, Kolmogorov-05]. This enables registration with large at single scale. employ fast updates special type interaction was proposed [Felzenszwalb Huttenlocher-04] max-product belief propagation (BP) introduce few independent speedups. In contrast BP, TRW-S allows us compute per-instance approximation ratios thus evaluate quality optimization. performance our technique demonstrated on both synthetic real-world experiments.

参考文章(23)
Julia A. Schnabel, Daniel Rueckert, Marcel Quist, Jane M. Blackall, Andy D. Castellano-Smith, Thomas Hartkens, Graeme P. Penney, Walter A. Hall, Haiying Liu, Charles L. Truwit, Frans A. Gerritsen, Derek L. G. Hill, David J. Hawkes, A Generic Framework for Non-rigid Registration Based on Non-uniform Multi-level Free-Form Deformations medical image computing and computer assisted intervention. pp. 573- 581 ,(2001) , 10.1007/3-540-45468-3_69
J. Konrad, E. Dubois, Bayesian estimation of motion vector fields IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 14, pp. 910- 927 ,(1992) , 10.1109/34.161350
C. Chekuri, S. Khanna, J. Naor, L. Zosin, A Linear Programming Formulation and Approximation Algorithms for the Metric Labeling Problem SIAM Journal on Discrete Mathematics. ,vol. 18, pp. 608- 625 ,(2005) , 10.1137/S0895480101396937
Alexis Roche, Gr�goire Malandain, Nicholas Ayache, Unifying Maximum Likelihood Approaches in Medical Image Registration International Journal of Imaging Systems and Technology. ,vol. 11, pp. 71- 80 ,(2000) , 10.1002/(SICI)1098-1098(2000)11:1<71::AID-IMA8>3.0.CO;2-5
Hao Jiang, Mark S. Drew, Ze-Nian Li, Matching by Linear Programming and Successive Convexification IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 29, pp. 959- 975 ,(2007) , 10.1109/TPAMI.2007.1048
M.J. Wainwright, T.S. Jaakkola, A.S. Willsky, MAP estimation via agreement on trees: message-passing and linear programming IEEE Transactions on Information Theory. ,vol. 51, pp. 3697- 3717 ,(2005) , 10.1109/TIT.2005.856938
N. Komodakis, G. Tziritas, A new framework for approximate labeling via graph cuts international conference on computer vision. ,vol. 2, pp. 1018- 1025 ,(2005) , 10.1109/ICCV.2005.14
Daniel Rueckert, Luke I Sonoda, Carmel Hayes, Derek LG Hill, Martin O Leach, David J Hawkes, Nonrigid registration using free-form deformations: application to breast MR images IEEE Transactions on Medical Imaging. ,vol. 18, pp. 712- 721 ,(1999) , 10.1109/42.796284
J. Zhang, J. Hanauer, The mean field theory for image motion estimation IEEE International Conference on Acoustics Speech and Signal Processing. ,vol. 5, pp. 197- 200 ,(1993) , 10.1109/ICASSP.1993.319781
Ben Glocker, Nikos Komodakis, Georgios Tziritas, Nassir Navab, Nikos Paragios, Dense image registration through MRFs and efficient linear programming. Medical Image Analysis. ,vol. 12, pp. 731- 741 ,(2008) , 10.1016/J.MEDIA.2008.03.006