HMM-based word alignment in statistical translation

作者: Stephan Vogel , Hermann Ney , Christoph Tillmann

DOI: 10.3115/993268.993313

关键词:

摘要: In this paper, we describe a new model for word alignment in statistical translation and present experimental results. The idea of the is to make probabilities dependent on differences positions rather than absolute positions. To achieve goal, approach uses first-order Hidden Markov (HMM) problem as they are used successfully speech recognition time problem. difference HMM that there no monotony constraint possible orderings. We details test several bilingual corpora.

参考文章(6)
Wolfgang Wahlster, Verbmobil - Translation of Face-To-Face Dialogs Grundlagen und Anwendungen der Künstlichen Intelligenz, 17. Fachtagung für Künstliche Intelligenz, Humboldt-Universität zu. pp. 393- 402 ,(1993) , 10.22028/D291-24923
Vincent J. Della Pietra, Stephen A. Della Pietra, Robert L. Mercer, Peter F. Brown, The mathematics of statistical machine translation: parameter estimation Computational Linguistics. ,vol. 19, pp. 263- 311 ,(1993)
Pascale Fung, Kenneth Ward Church, K-vec: a new approach for aligning parallel texts international conference on computational linguistics. pp. 1096- 1102 ,(1994) , 10.3115/991250.991328
I. Dagan, K. Church, W. Gale, Robust Bilingual Word Alignment for Machine Aided Translation meeting of the association for computational linguistics. pp. 209- 224 ,(1999) , 10.1007/978-94-017-2390-9_13