Comparison of selected polarizable and nonpolarizable water models in molecular dynamics simulations of ice Ih

作者: Ivan Gladich , Martina Roeselová

DOI: 10.1039/C2CP41497J

关键词:

摘要: We present a molecular dynamics simulation study in which we determined the melting point of ice Ih for polarizable SWM4-NDP water model (Lamoureux et al., Chem. Phys. Lett., 2006, 418, 245–249) and compared performance several popular force fields, both nonpolarizable, terms temperature, stability orientational structuring ice. The simulations yield temperature as low Tm = 185 ± 10 K, despite quadrupole moment molecule being close to experimental gas phase value. results thus show that dependence on quadrupole, observed three- four-site models, is generally lost if polarization explicitly included. also shows adding polarizability planar three-charge increases disorder hexagonal In addition, analysis tetrahedral order bulk reveals correlation between pre-existing degree simulated using different nonpolarizable models models. Our findings suggest some new considerations regarding role forces crystalline solid may guide future development reliable

参考文章(93)
Jeffrey R. Errington, Pablo G. Debenedetti, Relationship between structural order and the anomalies of liquid water Nature. ,vol. 409, pp. 318- 321 ,(2001) , 10.1038/35053024
C. Vega, J. L. F. Abascal, M. M. Conde, J. L. Aragones, What ice can teach us about water interactions: a critical comparison of the performance of different water models. Faraday Discussions. ,vol. 141, pp. 251- 276 ,(2009) , 10.1039/B805531A
Carlos Manuel Carlevaro, Lesser Blum, Fernando Vericat, Generalized mean spherical approximation for a model of water with dipole, quadrupole, and short-range potential of tetrahedral symmetry Journal of Chemical Physics. ,vol. 119, pp. 5198- 5215 ,(2003) , 10.1063/1.1597475
Berk Hess, Carsten Kutzner, David van der Spoel, Erik Lindahl, GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation Journal of Chemical Theory and Computation. ,vol. 4, pp. 435- 447 ,(2008) , 10.1021/CT700301Q
Geert-Jan Kroes, Surface melting of the (0001) face of TIP4P ice Surface Science. ,vol. 275, pp. 365- 382 ,(1992) , 10.1016/0039-6028(92)90809-K
M. M. Conde, C. Vega, A. Patrykiejew, The thickness of a liquid layer on the free surface of ice as obtained from computer simulation. Journal of Chemical Physics. ,vol. 129, pp. 014702- 014702 ,(2008) , 10.1063/1.2940195
Douglas Lowe, A. Robert MacKenzie, Polar stratospheric cloud microphysics and chemistry Journal of Atmospheric and Solar-Terrestrial Physics. ,vol. 70, pp. 13- 40 ,(2008) , 10.1016/J.JASTP.2007.09.011
Joost W. M. Frenken, J. F. van der Veen, Observation of surface melting Physical Review Letters. ,vol. 54, pp. 134- 137 ,(1985) , 10.1103/PHYSREVLETT.54.134
D. Ardura, T. F. Kahan, D. J. Donaldson, Self-association of naphthalene at the air-ice interface. Journal of Physical Chemistry A. ,vol. 113, pp. 7353- 7359 ,(2009) , 10.1021/JP811385M