Tensor Fields on Orbits of Quantum States and Applications

作者: Georg F. Volkert

DOI:

关键词:

摘要: On classical Lie groups, which act by means of a unitary representation on finite dimensional Hilbert spaces H, we identify two classes tensor field constructions. First, as pull-back fields order from modified Hermitian fields, constructed the property having vertical distributions C_0-principal bundle H_0 over projective space P(H) in kernel. And second, directly group, as left-invariant representation-dependent operator-valued (LIROVTs) arbitrary being evaluated quantum state. Within NP-hard problem of deciding whether given state n-level bi-partite system is entangled or separable (Gurvits, 2003), show that both constructions admit geometric approach to this problem, evades traditional ambiguity defining metrical structures convex set mixed states. In particular considering manifolds associated orbits passing through selected state when acted upon local group U(n)xU(n) Schmidt coefficient decomposition inducing transformations, find following results: the case pure states Schmidt-equivalence are Lagrangian submanifolds define maximal This implies stronger statement as one proposed Bengtsson (2007). Moreover, Riemannian split and provide quantitative characterization of entanglement recover measure Schlienz Mahler (1995). case highlight relation between LIROVTs class computable separability criteria based Bloch-representation (de Vicente, 2007).

参考文章(69)
Ingemar Bengtsson, Karol Zyczkowski, Geometry of Quantum States gqs. pp. 418- ,(2006) , 10.2277/0521814510
Andrei Moroianu, Lectures on Kähler geometry ,(2007)
Julio I. De Vicente, Separability criteria based on the bloch representation of density matrices Quantum Information & Computation. ,vol. 7, pp. 624- 638 ,(2007) , 10.5555/2011734.2011739
M. C. Abbati, R. Cirelli, P. Lanzavecchia, A. Maniá, Pure states of general quantum-mechanical systems as Kähler bundles Il Nuovo Cimento B Series 11. ,vol. 83, pp. 43- 60 ,(1984) , 10.1007/BF02723763
Vladimir Igorevich Arnolʹd, Djilali Embarek, Les méthodes mathématiques de la mécanique classique in-house reproduction. ,(1976)
Armin Uhlmann, The Metric of Bures and the Geometric Phase Groups and Related Topics. pp. 267- 274 ,(1992) , 10.1007/978-94-011-2801-8_23
R. Cirelli, P. Lanzavecchia, Hamiltonian vector fields in quantum mechanics Il Nuovo Cimento B. ,vol. 79, pp. 271- 283 ,(1984) , 10.1007/BF02748976
Giuseppe Marmo, The space of density states in geometrical quantum mechanics arXiv: Quantum Physics. ,(2007)
Paul Adrien Maurice Dirac, The Principles of Quantum Mechanics ,(1930)
Enrico Onofri, A note on coherent state representations of Lie groups Journal of Mathematical Physics. ,vol. 16, pp. 1087- 1089 ,(1975) , 10.1063/1.522663