Nano-Optoelectronic Integration on Silicon

作者: Roger Chen

DOI:

关键词:

摘要: Modern silicon technology offers unprecedented spatial and temporal control of electrons with high levels integrated complexity. Integrating nanophotonic functionality onto should then allow us to extend this level photons. Resulting nano-optoelectronic systems will inevitably create new functionality, which not only enables next-generation technologies like optical interconnects, but also gives rise yet unforeseen applications.Directly growing III-V nanomaterials on provides an advantageous pathway towards optoelectronic integration. Conventional wisdom often breaks at the nanoscale, traditional integration challenges lattice mismatch are circumvented. In particular, nanoneedles nanopillars attractive properties grow under conditions that compatible process constraints CMOS technology.This dissertation present a variety devices developed using nanoneedle nanopillar platform. Nanolasers demonstrated pumping, progress electrical injection is shown. Under reverse bias, enable avalanche photodiodes featuring gain-bandwidth products in excess 100 GHz. Nanopillar exhibit clear photovoltaic effects even support nonlinear generation. The breadth shown suggests powerful marriage between photons well within reach.

参考文章(171)
Shanna Marie Crankshaw, None, Spectroscopic characterization of III-V semiconductor nanomaterials Ph.D. Thesis. ,(2009)
Federico Capasso, Chapter 1 Physics of Avalanche Photodiodes Semiconductors and Semimetals. ,vol. 22, pp. 1- 172 ,(1985) , 10.1016/S0080-8784(08)62952-X
Yimin Kang, Han-Din Liu, Mike Morse, Mario J. Paniccia, Moshe Zadka, Stas Litski, Gadi Sarid, Alexandre Pauchard, Ying-Hao Kuo, Hui-Wen Chen, Wissem Sfar Zaoui, John E. Bowers, Andreas Beling, Dion C. McIntosh, Xiaoguang Zheng, Joe C. Campbell, Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product Nature Photonics. ,vol. 3, pp. 59- 63 ,(2009) , 10.1038/NPHOTON.2008.247
David L. Jeanmaire, Richard P. Van Duyne, Surface raman spectroelectrochemistry Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. ,vol. 84, pp. 1- 20 ,(1977) , 10.1016/S0022-0728(77)80224-6
L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, F. Priolo, Optical gain in silicon nanocrystals Nature. ,vol. 408, pp. 440- 444 ,(2000) , 10.1038/35044012
Wenjun Fan, Shuang Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood,, K. J. Malloy, S. R. J. Brueck, Second harmonic generation from a nanopatterned isotropic nonlinear material Nano Letters. ,vol. 6, pp. 1027- 1030 ,(2006) , 10.1021/NL0604457
Matthew S Bigelow, Nick N Lepeshkin, Robert W Boyd, Superluminal and Slow Light Propagation in a Room-Temperature Solid Science. ,vol. 301, pp. 200- 202 ,(2003) , 10.1126/SCIENCE.1084429
L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, E. Lallier, All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion Applied Physics Letters. ,vol. 79, pp. 904- 906 ,(2001) , 10.1063/1.1389326
T. Stehlin, M. Feller, P. Guyot-Sionnest, Y. R. Shen, Optical second-harmonic generation as a surface probe for noncentrosymmetric media. Optics Letters. ,vol. 13, pp. 389- 391 ,(1988) , 10.1364/OL.13.000389