Discrete differential calculus graphs, topologies and gauge theory

作者: Aristophanes Dimakis , Folkert Müller‐Hoissen

DOI: 10.1063/1.530638

关键词:

摘要: Differential calculus on discrete sets is developed in the spirit of noncommutative geometry. Any differential algebra a set can be regarded as ‘‘reduction’’ ‘‘universal algebra’’ and this allows systematic exploration algebras given set. Associated with (di)graph where two vertices are connected by at most (antiparallel) arrows. The interpretation such graph ‘‘Hasse diagram’’ determining (locally finite) topology then establishes contact recent work other authors which discretizations topological spaces corresponding field theories were considered retain their global structure. It shown that theories, particular gauge formulated close analogy continuum case. framework presented generalizes ordinary lattice theory recovered from an oriented (hypercubic) graph. also includes, e.g., two‐point space used Connes Lott (and others) models elementary particle physics. formalism suggests latter approximation manifold thus opens way to relate ‘‘internal’’ (a la et al.) dimensionally reduced fields. Furthermore, ‘‘symmetric lattice’’ studied (in certain limit) turns out related ‘‘noncommutative calculus’’ manifolds.

参考文章(29)
A.P. Balachandran, E. Ercolessi, G. Bimonte, P. Teotonio-Sobrinho, FINITE APPROXIMATIONS TO QUANTUM PHYSICS: QUANTUM POINTS AND THEIR BUNDLES Nuclear Physics. ,vol. 418, pp. 477- 493 ,(1994) , 10.1016/0550-3213(94)90527-4
Arthur Ruark, The Roles of Discrete and Continuous Theories in Physics Physical Review. ,vol. 37, pp. 315- 326 ,(1931) , 10.1103/PHYSREV.37.315
V. Ambarzumian, D. Iwanenko, Zur Frage nach Vermeidung der unendlichen Selbstrückwirkung des Elektrons European Physical Journal. ,vol. 64, pp. 563- 567 ,(1930) , 10.1007/BF01397206
F Muller-Hoissen, A Dimakis, Differential calculus and gauge theory on finite sets Journal of Physics A. ,vol. 27, pp. 3159- 3178 ,(1994) , 10.1088/0305-4470/27/9/028
Raoul Bott, Loring W. Tu, Differential Forms in Algebraic Topology ,(1982)
F Muller-Hoissen, C Reuten, Bicovariant differential calculi on GLp,q(2) and quantum subgroups Journal of Physics A. ,vol. 26, pp. 2955- 2975 ,(1993) , 10.1088/0305-4470/26/12/031
A. Dimakis, F. Müller-Hoissen, T. Striker, From continuum to lattice theory via deformation of the differential calculus Physics Letters B. ,vol. 300, pp. 141- 144 ,(1993) , 10.1016/0370-2693(93)90761-6
Alain Connes, John Lott, Particle models and noncommutative geometry Nuclear Physics B - Proceedings Supplements. ,vol. 18, pp. 29- 47 ,(1991) , 10.1016/0920-5632(91)90120-4
N.S. Manton, A new six-dimensional approach to the Weinberg-Salam model Nuclear Physics. ,vol. 158, pp. 141- 153 ,(1979) , 10.1016/0550-3213(79)90192-5
A. Dimakis, F. Müller-Hoissen, Quantum mechanics on a lattice and q-deformations Physics Letters B. ,vol. 295, pp. 242- 248 ,(1992) , 10.1016/0370-2693(92)91561-M