KMS states on Quantum Grammars

作者: V. A. Malyshev

DOI: 10.1063/1.533357

关键词:

摘要: We consider quantum (unitary) continuous time evolution of spins on a lattice together with the itself. In physics such was discussed in connection gravity. It is also related to what called circuits, one incarnations computer. simpler models for which can obtain exact mathematical results. prove existence dynamics both Schroedinger and Heisenberg pictures, construct KMS states appropriate C*-algebras. show (for high temperatures) that each system where undergoes evolution, there natural scaling leading spin fixed lattice, defined by renormalized Hamiltonian.

参考文章(22)
A.P. Balachandran, G. Bimonte, E. Ercolessi, G. Landi, F. Lizzi, G. Sparano, P. Teotonio-Sobrinho, Noncommutative lattices as finite approximations Journal of Geometry and Physics. ,vol. 18, pp. 163- 194 ,(1996) , 10.1016/0393-0440(95)00006-2
David A. Meyer, UNITARITY IN ONE DIMENSIONAL NONLINEAR QUANTUM CELLULAR AUTOMATA arXiv: Quantum Physics. ,(1996)
John C. Baez, Higher-Dimensional Algebra and Planck-Scale Physics arXiv: General Relativity and Quantum Cosmology. ,(1999)
I. Dadić, K. Pisk, Dynamics of discrete-space structure International Journal of Theoretical Physics. ,vol. 18, pp. 345- 358 ,(1979) , 10.1007/BF00670430
Aristophanes Dimakis, Folkert Müller‐Hoissen, Discrete differential calculus graphs, topologies and gauge theory Journal of Mathematical Physics. ,vol. 35, pp. 6703- 6735 ,(1994) , 10.1063/1.530638
Roumen Borissov, Graphical evolution of spin network states Physical Review D. ,vol. 55, pp. 6099- 6111 ,(1997) , 10.1103/PHYSREVD.55.6099
Roumen Borissov, Roumen Borissov, Lee Smolin, Seth Major, The geometry of quantum spin networks Classical and Quantum Gravity. ,vol. 13, pp. 3183- 3195 ,(1996) , 10.1088/0264-9381/13/12/009
Fred R. Thiemann, Chayefsky's Network Explicator. ,vol. 54, pp. 115- 117 ,(1996) , 10.1080/00144940.1996.9934084
Luca Bombelli, Joohan Lee, David Meyer, Rafael D. Sorkin, Space-time as a causal set Physical Review Letters. ,vol. 59, pp. 521- 524 ,(1987) , 10.1103/PHYSREVLETT.59.521